Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem18 Structured version   Visualization version   GIF version

Theorem stoweidlem18 42297
Description: This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 92 when A is empty, the trivial case. Here D is used to denote the set A of Lemma 2, because the variable A is used for the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem18.1 𝑡𝐷
stoweidlem18.2 𝑡𝜑
stoweidlem18.3 𝐹 = (𝑡𝑇 ↦ 1)
stoweidlem18.4 𝑇 = 𝐽
stoweidlem18.5 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
stoweidlem18.6 (𝜑𝐵 ∈ (Clsd‘𝐽))
stoweidlem18.7 (𝜑𝐸 ∈ ℝ+)
stoweidlem18.8 (𝜑𝐷 = ∅)
Assertion
Ref Expression
stoweidlem18 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝑡,𝑎,𝑇   𝐴,𝑎   𝜑,𝑎   𝑥,𝑡   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑡)   𝐴(𝑡)   𝐵(𝑡,𝑎)   𝐷(𝑡,𝑎)   𝐸(𝑡,𝑎)   𝐹(𝑡,𝑎)   𝐽(𝑥,𝑡,𝑎)

Proof of Theorem stoweidlem18
StepHypRef Expression
1 stoweidlem18.3 . . 3 𝐹 = (𝑡𝑇 ↦ 1)
2 1re 10635 . . . 4 1 ∈ ℝ
3 stoweidlem18.5 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
43stoweidlem4 42283 . . . 4 ((𝜑 ∧ 1 ∈ ℝ) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
52, 4mpan2 689 . . 3 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
61, 5eqeltrid 2917 . 2 (𝜑𝐹𝐴)
7 stoweidlem18.2 . . 3 𝑡𝜑
8 0le1 11157 . . . . . 6 0 ≤ 1
9 simpr 487 . . . . . . 7 ((𝜑𝑡𝑇) → 𝑡𝑇)
101fvmpt2 6773 . . . . . . 7 ((𝑡𝑇 ∧ 1 ∈ ℝ) → (𝐹𝑡) = 1)
119, 2, 10sylancl 588 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) = 1)
128, 11breqtrrid 5096 . . . . 5 ((𝜑𝑡𝑇) → 0 ≤ (𝐹𝑡))
13 1le1 11262 . . . . . 6 1 ≤ 1
1411, 13eqbrtrdi 5097 . . . . 5 ((𝜑𝑡𝑇) → (𝐹𝑡) ≤ 1)
1512, 14jca 514 . . . 4 ((𝜑𝑡𝑇) → (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1))
1615ex 415 . . 3 (𝜑 → (𝑡𝑇 → (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1)))
177, 16ralrimi 3216 . 2 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1))
18 stoweidlem18.8 . . 3 (𝜑𝐷 = ∅)
19 stoweidlem18.1 . . . . 5 𝑡𝐷
20 nfcv 2977 . . . . 5 𝑡
2119, 20nfeq 2991 . . . 4 𝑡 𝐷 = ∅
2221rzalf 41267 . . 3 (𝐷 = ∅ → ∀𝑡𝐷 (𝐹𝑡) < 𝐸)
2318, 22syl 17 . 2 (𝜑 → ∀𝑡𝐷 (𝐹𝑡) < 𝐸)
24 1red 10636 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
25 stoweidlem18.7 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
2624, 25ltsubrpd 12457 . . . . . 6 (𝜑 → (1 − 𝐸) < 1)
2726adantr 483 . . . . 5 ((𝜑𝑡𝐵) → (1 − 𝐸) < 1)
28 stoweidlem18.6 . . . . . . . 8 (𝜑𝐵 ∈ (Clsd‘𝐽))
29 stoweidlem18.4 . . . . . . . . 9 𝑇 = 𝐽
3029cldss 21631 . . . . . . . 8 (𝐵 ∈ (Clsd‘𝐽) → 𝐵𝑇)
3128, 30syl 17 . . . . . . 7 (𝜑𝐵𝑇)
3231sselda 3966 . . . . . 6 ((𝜑𝑡𝐵) → 𝑡𝑇)
3332, 2, 10sylancl 588 . . . . 5 ((𝜑𝑡𝐵) → (𝐹𝑡) = 1)
3427, 33breqtrrd 5086 . . . 4 ((𝜑𝑡𝐵) → (1 − 𝐸) < (𝐹𝑡))
3534ex 415 . . 3 (𝜑 → (𝑡𝐵 → (1 − 𝐸) < (𝐹𝑡)))
367, 35ralrimi 3216 . 2 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡))
37 nfcv 2977 . . . . . 6 𝑡𝑥
38 nfmpt1 5156 . . . . . . 7 𝑡(𝑡𝑇 ↦ 1)
391, 38nfcxfr 2975 . . . . . 6 𝑡𝐹
4037, 39nfeq 2991 . . . . 5 𝑡 𝑥 = 𝐹
41 fveq1 6663 . . . . . . 7 (𝑥 = 𝐹 → (𝑥𝑡) = (𝐹𝑡))
4241breq2d 5070 . . . . . 6 (𝑥 = 𝐹 → (0 ≤ (𝑥𝑡) ↔ 0 ≤ (𝐹𝑡)))
4341breq1d 5068 . . . . . 6 (𝑥 = 𝐹 → ((𝑥𝑡) ≤ 1 ↔ (𝐹𝑡) ≤ 1))
4442, 43anbi12d 632 . . . . 5 (𝑥 = 𝐹 → ((0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1)))
4540, 44ralbid 3231 . . . 4 (𝑥 = 𝐹 → (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1)))
4641breq1d 5068 . . . . 5 (𝑥 = 𝐹 → ((𝑥𝑡) < 𝐸 ↔ (𝐹𝑡) < 𝐸))
4740, 46ralbid 3231 . . . 4 (𝑥 = 𝐹 → (∀𝑡𝐷 (𝑥𝑡) < 𝐸 ↔ ∀𝑡𝐷 (𝐹𝑡) < 𝐸))
4841breq2d 5070 . . . . 5 (𝑥 = 𝐹 → ((1 − 𝐸) < (𝑥𝑡) ↔ (1 − 𝐸) < (𝐹𝑡)))
4940, 48ralbid 3231 . . . 4 (𝑥 = 𝐹 → (∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡) ↔ ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡)))
5045, 47, 493anbi123d 1432 . . 3 (𝑥 = 𝐹 → ((∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝐹𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡))))
5150rspcev 3622 . 2 ((𝐹𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝐹𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
526, 17, 23, 36, 51syl13anc 1368 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wnf 1780  wcel 2110  wnfc 2961  wral 3138  wrex 3139  wss 3935  c0 4290   cuni 4831   class class class wbr 5058  cmpt 5138  cfv 6349  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   < clt 10669  cle 10670  cmin 10864  +crp 12383  Clsdccld 21618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-rp 12384  df-top 21496  df-cld 21621
This theorem is referenced by:  stoweidlem58  42337
  Copyright terms: Public domain W3C validator