Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem36 Structured version   Visualization version   GIF version

Theorem stoweidlem36 42328
Description: This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function p in the subalgebra, such that pt ( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Z is used for t0 , S is used for t e. T - U , h is used for pt . G is used for (ht)^2 and the final h is a normalized version of G ( divided by its norm, see the variable N ). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem36.1 𝑄
stoweidlem36.2 𝑡𝐻
stoweidlem36.3 𝑡𝐹
stoweidlem36.4 𝑡𝐺
stoweidlem36.5 𝑡𝜑
stoweidlem36.6 𝐾 = (topGen‘ran (,))
stoweidlem36.7 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem36.8 𝑇 = 𝐽
stoweidlem36.9 𝐺 = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐹𝑡)))
stoweidlem36.10 𝑁 = sup(ran 𝐺, ℝ, < )
stoweidlem36.11 𝐻 = (𝑡𝑇 ↦ ((𝐺𝑡) / 𝑁))
stoweidlem36.12 (𝜑𝐽 ∈ Comp)
stoweidlem36.13 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem36.14 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem36.15 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem36.16 (𝜑𝑆𝑇)
stoweidlem36.17 (𝜑𝑍𝑇)
stoweidlem36.18 (𝜑𝐹𝐴)
stoweidlem36.19 (𝜑 → (𝐹𝑆) ≠ (𝐹𝑍))
stoweidlem36.20 (𝜑 → (𝐹𝑍) = 0)
Assertion
Ref Expression
stoweidlem36 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Distinct variable groups:   𝑓,𝑔,𝑡,𝑇   𝐴,𝑓,𝑔   𝑓,𝐹,𝑔   𝑓,𝐺,𝑔   𝜑,𝑓,𝑔   𝑔,𝑁,𝑡   𝑡,,𝑆   𝐴,   ,𝐻   𝑇,   ,𝑍,𝑡   𝑥,𝑡,𝑁   𝑥,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡)   𝑄(𝑥,𝑡,𝑓,𝑔,)   𝑆(𝑥,𝑓,𝑔)   𝐹(𝑥,𝑡,)   𝐺(𝑥,𝑡,)   𝐻(𝑥,𝑡,𝑓,𝑔)   𝐽(𝑥,𝑡,𝑓,𝑔,)   𝐾(𝑥,𝑡,𝑓,𝑔,)   𝑁(𝑓,)   𝑍(𝑥,𝑓,𝑔)

Proof of Theorem stoweidlem36
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem36.11 . . . . . 6 𝐻 = (𝑡𝑇 ↦ ((𝐺𝑡) / 𝑁))
2 stoweidlem36.5 . . . . . . 7 𝑡𝜑
3 stoweidlem36.6 . . . . . . . . . . . 12 𝐾 = (topGen‘ran (,))
4 stoweidlem36.8 . . . . . . . . . . . 12 𝑇 = 𝐽
5 eqid 2823 . . . . . . . . . . . 12 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
6 stoweidlem36.13 . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
7 stoweidlem36.9 . . . . . . . . . . . . . 14 𝐺 = (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐹𝑡)))
8 stoweidlem36.18 . . . . . . . . . . . . . . 15 (𝜑𝐹𝐴)
9 stoweidlem36.3 . . . . . . . . . . . . . . . . 17 𝑡𝐹
109nfeq2 2997 . . . . . . . . . . . . . . . 16 𝑡 𝑓 = 𝐹
119nfeq2 2997 . . . . . . . . . . . . . . . 16 𝑡 𝑔 = 𝐹
12 stoweidlem36.14 . . . . . . . . . . . . . . . 16 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
1310, 11, 12stoweidlem6 42298 . . . . . . . . . . . . . . 15 ((𝜑𝐹𝐴𝐹𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐹𝑡))) ∈ 𝐴)
148, 8, 13mpd3an23 1459 . . . . . . . . . . . . . 14 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) · (𝐹𝑡))) ∈ 𝐴)
157, 14eqeltrid 2919 . . . . . . . . . . . . 13 (𝜑𝐺𝐴)
166, 15sseldd 3970 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
173, 4, 5, 16fcnre 41289 . . . . . . . . . . 11 (𝜑𝐺:𝑇⟶ℝ)
1817ffvelrnda 6853 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝐺𝑡) ∈ ℝ)
1918recnd 10671 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐺𝑡) ∈ ℂ)
20 stoweidlem36.10 . . . . . . . . . . . 12 𝑁 = sup(ran 𝐺, ℝ, < )
21 stoweidlem36.12 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ Comp)
22 stoweidlem36.16 . . . . . . . . . . . . . . 15 (𝜑𝑆𝑇)
2322ne0d 4303 . . . . . . . . . . . . . 14 (𝜑𝑇 ≠ ∅)
244, 3, 21, 16, 23cncmpmax 41296 . . . . . . . . . . . . 13 (𝜑 → (sup(ran 𝐺, ℝ, < ) ∈ ran 𝐺 ∧ sup(ran 𝐺, ℝ, < ) ∈ ℝ ∧ ∀𝑠𝑇 (𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < )))
2524simp2d 1139 . . . . . . . . . . . 12 (𝜑 → sup(ran 𝐺, ℝ, < ) ∈ ℝ)
2620, 25eqeltrid 2919 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
2726recnd 10671 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
2827adantr 483 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑁 ∈ ℂ)
29 0red 10646 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
3017, 22ffvelrnd 6854 . . . . . . . . . . . . 13 (𝜑 → (𝐺𝑆) ∈ ℝ)
316, 8sseldd 3970 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
323, 4, 5, 31fcnre 41289 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑇⟶ℝ)
3332, 22ffvelrnd 6854 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑆) ∈ ℝ)
34 stoweidlem36.19 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑆) ≠ (𝐹𝑍))
35 stoweidlem36.20 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑍) = 0)
3634, 35neeqtrd 3087 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑆) ≠ 0)
3733, 36msqgt0d 11209 . . . . . . . . . . . . . 14 (𝜑 → 0 < ((𝐹𝑆) · (𝐹𝑆)))
3833, 33remulcld 10673 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹𝑆) · (𝐹𝑆)) ∈ ℝ)
39 nfcv 2979 . . . . . . . . . . . . . . . 16 𝑡𝑆
409, 39nffv 6682 . . . . . . . . . . . . . . . . 17 𝑡(𝐹𝑆)
41 nfcv 2979 . . . . . . . . . . . . . . . . 17 𝑡 ·
4240, 41, 40nfov 7188 . . . . . . . . . . . . . . . 16 𝑡((𝐹𝑆) · (𝐹𝑆))
43 fveq2 6672 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑆 → (𝐹𝑡) = (𝐹𝑆))
4443, 43oveq12d 7176 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑆 → ((𝐹𝑡) · (𝐹𝑡)) = ((𝐹𝑆) · (𝐹𝑆)))
4539, 42, 44, 7fvmptf 6791 . . . . . . . . . . . . . . 15 ((𝑆𝑇 ∧ ((𝐹𝑆) · (𝐹𝑆)) ∈ ℝ) → (𝐺𝑆) = ((𝐹𝑆) · (𝐹𝑆)))
4622, 38, 45syl2anc 586 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝑆) = ((𝐹𝑆) · (𝐹𝑆)))
4737, 46breqtrrd 5096 . . . . . . . . . . . . 13 (𝜑 → 0 < (𝐺𝑆))
4824simp3d 1140 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑠𝑇 (𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ))
49 fveq2 6672 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑆 → (𝐺𝑠) = (𝐺𝑆))
5049breq1d 5078 . . . . . . . . . . . . . . 15 (𝑠 = 𝑆 → ((𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ) ↔ (𝐺𝑆) ≤ sup(ran 𝐺, ℝ, < )))
5150rspccva 3624 . . . . . . . . . . . . . 14 ((∀𝑠𝑇 (𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ) ∧ 𝑆𝑇) → (𝐺𝑆) ≤ sup(ran 𝐺, ℝ, < ))
5248, 22, 51syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → (𝐺𝑆) ≤ sup(ran 𝐺, ℝ, < ))
5329, 30, 25, 47, 52ltletrd 10802 . . . . . . . . . . . 12 (𝜑 → 0 < sup(ran 𝐺, ℝ, < ))
5453gt0ne0d 11206 . . . . . . . . . . 11 (𝜑 → sup(ran 𝐺, ℝ, < ) ≠ 0)
5520neeq1i 3082 . . . . . . . . . . 11 (𝑁 ≠ 0 ↔ sup(ran 𝐺, ℝ, < ) ≠ 0)
5654, 55sylibr 236 . . . . . . . . . 10 (𝜑𝑁 ≠ 0)
5756adantr 483 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑁 ≠ 0)
5819, 28, 57divrecd 11421 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 𝑁) = ((𝐺𝑡) · (1 / 𝑁)))
59 simpr 487 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝑡𝑇)
6026, 56rereccld 11469 . . . . . . . . . . 11 (𝜑 → (1 / 𝑁) ∈ ℝ)
6160adantr 483 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (1 / 𝑁) ∈ ℝ)
62 eqid 2823 . . . . . . . . . . 11 (𝑡𝑇 ↦ (1 / 𝑁)) = (𝑡𝑇 ↦ (1 / 𝑁))
6362fvmpt2 6781 . . . . . . . . . 10 ((𝑡𝑇 ∧ (1 / 𝑁) ∈ ℝ) → ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡) = (1 / 𝑁))
6459, 61, 63syl2anc 586 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡) = (1 / 𝑁))
6564oveq2d 7174 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡)) = ((𝐺𝑡) · (1 / 𝑁)))
6658, 65eqtr4d 2861 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 𝑁) = ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡)))
672, 66mpteq2da 5162 . . . . . 6 (𝜑 → (𝑡𝑇 ↦ ((𝐺𝑡) / 𝑁)) = (𝑡𝑇 ↦ ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡))))
681, 67syl5eq 2870 . . . . 5 (𝜑𝐻 = (𝑡𝑇 ↦ ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡))))
69 stoweidlem36.15 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
7069stoweidlem4 42296 . . . . . . 7 ((𝜑 ∧ (1 / 𝑁) ∈ ℝ) → (𝑡𝑇 ↦ (1 / 𝑁)) ∈ 𝐴)
7160, 70mpdan 685 . . . . . 6 (𝜑 → (𝑡𝑇 ↦ (1 / 𝑁)) ∈ 𝐴)
72 stoweidlem36.4 . . . . . . . 8 𝑡𝐺
7372nfeq2 2997 . . . . . . 7 𝑡 𝑓 = 𝐺
74 nfmpt1 5166 . . . . . . . 8 𝑡(𝑡𝑇 ↦ (1 / 𝑁))
7574nfeq2 2997 . . . . . . 7 𝑡 𝑔 = (𝑡𝑇 ↦ (1 / 𝑁))
7673, 75, 12stoweidlem6 42298 . . . . . 6 ((𝜑𝐺𝐴 ∧ (𝑡𝑇 ↦ (1 / 𝑁)) ∈ 𝐴) → (𝑡𝑇 ↦ ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡))) ∈ 𝐴)
7715, 71, 76mpd3an23 1459 . . . . 5 (𝜑 → (𝑡𝑇 ↦ ((𝐺𝑡) · ((𝑡𝑇 ↦ (1 / 𝑁))‘𝑡))) ∈ 𝐴)
7868, 77eqeltrd 2915 . . . 4 (𝜑𝐻𝐴)
79 stoweidlem36.17 . . . . . . 7 (𝜑𝑍𝑇)
8017, 79ffvelrnd 6854 . . . . . . . 8 (𝜑 → (𝐺𝑍) ∈ ℝ)
8180, 26, 56redivcld 11470 . . . . . . 7 (𝜑 → ((𝐺𝑍) / 𝑁) ∈ ℝ)
82 nfcv 2979 . . . . . . . 8 𝑡𝑍
8372, 82nffv 6682 . . . . . . . . 9 𝑡(𝐺𝑍)
84 nfcv 2979 . . . . . . . . 9 𝑡 /
85 nfcv 2979 . . . . . . . . 9 𝑡𝑁
8683, 84, 85nfov 7188 . . . . . . . 8 𝑡((𝐺𝑍) / 𝑁)
87 fveq2 6672 . . . . . . . . 9 (𝑡 = 𝑍 → (𝐺𝑡) = (𝐺𝑍))
8887oveq1d 7173 . . . . . . . 8 (𝑡 = 𝑍 → ((𝐺𝑡) / 𝑁) = ((𝐺𝑍) / 𝑁))
8982, 86, 88, 1fvmptf 6791 . . . . . . 7 ((𝑍𝑇 ∧ ((𝐺𝑍) / 𝑁) ∈ ℝ) → (𝐻𝑍) = ((𝐺𝑍) / 𝑁))
9079, 81, 89syl2anc 586 . . . . . 6 (𝜑 → (𝐻𝑍) = ((𝐺𝑍) / 𝑁))
91 0re 10645 . . . . . . . . . . 11 0 ∈ ℝ
9235, 91eqeltrdi 2923 . . . . . . . . . 10 (𝜑 → (𝐹𝑍) ∈ ℝ)
9392, 92remulcld 10673 . . . . . . . . 9 (𝜑 → ((𝐹𝑍) · (𝐹𝑍)) ∈ ℝ)
949, 82nffv 6682 . . . . . . . . . . 11 𝑡(𝐹𝑍)
9594, 41, 94nfov 7188 . . . . . . . . . 10 𝑡((𝐹𝑍) · (𝐹𝑍))
96 fveq2 6672 . . . . . . . . . . 11 (𝑡 = 𝑍 → (𝐹𝑡) = (𝐹𝑍))
9796, 96oveq12d 7176 . . . . . . . . . 10 (𝑡 = 𝑍 → ((𝐹𝑡) · (𝐹𝑡)) = ((𝐹𝑍) · (𝐹𝑍)))
9882, 95, 97, 7fvmptf 6791 . . . . . . . . 9 ((𝑍𝑇 ∧ ((𝐹𝑍) · (𝐹𝑍)) ∈ ℝ) → (𝐺𝑍) = ((𝐹𝑍) · (𝐹𝑍)))
9979, 93, 98syl2anc 586 . . . . . . . 8 (𝜑 → (𝐺𝑍) = ((𝐹𝑍) · (𝐹𝑍)))
10035, 35oveq12d 7176 . . . . . . . . 9 (𝜑 → ((𝐹𝑍) · (𝐹𝑍)) = (0 · 0))
101 0cn 10635 . . . . . . . . . 10 0 ∈ ℂ
102101mul02i 10831 . . . . . . . . 9 (0 · 0) = 0
103100, 102syl6eq 2874 . . . . . . . 8 (𝜑 → ((𝐹𝑍) · (𝐹𝑍)) = 0)
10499, 103eqtrd 2858 . . . . . . 7 (𝜑 → (𝐺𝑍) = 0)
105104oveq1d 7173 . . . . . 6 (𝜑 → ((𝐺𝑍) / 𝑁) = (0 / 𝑁))
10627, 56div0d 11417 . . . . . 6 (𝜑 → (0 / 𝑁) = 0)
10790, 105, 1063eqtrd 2862 . . . . 5 (𝜑 → (𝐻𝑍) = 0)
10832ffvelrnda 6853 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
109108msqge0d 11210 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 0 ≤ ((𝐹𝑡) · (𝐹𝑡)))
110108, 108remulcld 10673 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → ((𝐹𝑡) · (𝐹𝑡)) ∈ ℝ)
1117fvmpt2 6781 . . . . . . . . . . . 12 ((𝑡𝑇 ∧ ((𝐹𝑡) · (𝐹𝑡)) ∈ ℝ) → (𝐺𝑡) = ((𝐹𝑡) · (𝐹𝑡)))
11259, 110, 111syl2anc 586 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (𝐺𝑡) = ((𝐹𝑡) · (𝐹𝑡)))
113109, 112breqtrrd 5096 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 0 ≤ (𝐺𝑡))
11426adantr 483 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝑁 ∈ ℝ)
11553, 20breqtrrdi 5110 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
116115adantr 483 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 0 < 𝑁)
117 divge0 11511 . . . . . . . . . 10 ((((𝐺𝑡) ∈ ℝ ∧ 0 ≤ (𝐺𝑡)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝐺𝑡) / 𝑁))
11818, 113, 114, 116, 117syl22anc 836 . . . . . . . . 9 ((𝜑𝑡𝑇) → 0 ≤ ((𝐺𝑡) / 𝑁))
11918, 114, 57redivcld 11470 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 𝑁) ∈ ℝ)
1201fvmpt2 6781 . . . . . . . . . 10 ((𝑡𝑇 ∧ ((𝐺𝑡) / 𝑁) ∈ ℝ) → (𝐻𝑡) = ((𝐺𝑡) / 𝑁))
12159, 119, 120syl2anc 586 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐻𝑡) = ((𝐺𝑡) / 𝑁))
122118, 121breqtrrd 5096 . . . . . . . 8 ((𝜑𝑡𝑇) → 0 ≤ (𝐻𝑡))
12319div1d 11410 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 1) = (𝐺𝑡))
124 fveq2 6672 . . . . . . . . . . . . . . 15 (𝑠 = 𝑡 → (𝐺𝑠) = (𝐺𝑡))
125124breq1d 5078 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → ((𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ) ↔ (𝐺𝑡) ≤ sup(ran 𝐺, ℝ, < )))
126125rspccva 3624 . . . . . . . . . . . . 13 ((∀𝑠𝑇 (𝐺𝑠) ≤ sup(ran 𝐺, ℝ, < ) ∧ 𝑡𝑇) → (𝐺𝑡) ≤ sup(ran 𝐺, ℝ, < ))
12748, 126sylan 582 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝐺𝑡) ≤ sup(ran 𝐺, ℝ, < ))
128127, 20breqtrrdi 5110 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (𝐺𝑡) ≤ 𝑁)
129123, 128eqbrtrd 5090 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 1) ≤ 𝑁)
130 1red 10644 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
131 0lt1 11164 . . . . . . . . . . . 12 0 < 1
132131a1i 11 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → 0 < 1)
133 lediv23 11534 . . . . . . . . . . 11 (((𝐺𝑡) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁) ∧ (1 ∈ ℝ ∧ 0 < 1)) → (((𝐺𝑡) / 𝑁) ≤ 1 ↔ ((𝐺𝑡) / 1) ≤ 𝑁))
13418, 114, 116, 130, 132, 133syl122anc 1375 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (((𝐺𝑡) / 𝑁) ≤ 1 ↔ ((𝐺𝑡) / 1) ≤ 𝑁))
135129, 134mpbird 259 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐺𝑡) / 𝑁) ≤ 1)
136121, 135eqbrtrd 5090 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐻𝑡) ≤ 1)
137122, 136jca 514 . . . . . . 7 ((𝜑𝑡𝑇) → (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))
138137ex 415 . . . . . 6 (𝜑 → (𝑡𝑇 → (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
1392, 138ralrimi 3218 . . . . 5 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))
140107, 139jca 514 . . . 4 (𝜑 → ((𝐻𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
141 fveq1 6671 . . . . . . 7 ( = 𝐻 → (𝑍) = (𝐻𝑍))
142141eqeq1d 2825 . . . . . 6 ( = 𝐻 → ((𝑍) = 0 ↔ (𝐻𝑍) = 0))
143 stoweidlem36.2 . . . . . . . 8 𝑡𝐻
144143nfeq2 2997 . . . . . . 7 𝑡 = 𝐻
145 fveq1 6671 . . . . . . . . 9 ( = 𝐻 → (𝑡) = (𝐻𝑡))
146145breq2d 5080 . . . . . . . 8 ( = 𝐻 → (0 ≤ (𝑡) ↔ 0 ≤ (𝐻𝑡)))
147145breq1d 5078 . . . . . . . 8 ( = 𝐻 → ((𝑡) ≤ 1 ↔ (𝐻𝑡) ≤ 1))
148146, 147anbi12d 632 . . . . . . 7 ( = 𝐻 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
149144, 148ralbid 3233 . . . . . 6 ( = 𝐻 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1)))
150142, 149anbi12d 632 . . . . 5 ( = 𝐻 → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ ((𝐻𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))))
151150elrab 3682 . . . 4 (𝐻 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ↔ (𝐻𝐴 ∧ ((𝐻𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝐻𝑡) ∧ (𝐻𝑡) ≤ 1))))
15278, 140, 151sylanbrc 585 . . 3 (𝜑𝐻 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))})
153 stoweidlem36.7 . . 3 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
154152, 153eleqtrrdi 2926 . 2 (𝜑𝐻𝑄)
15530, 26, 47, 115divgt0d 11577 . . 3 (𝜑 → 0 < ((𝐺𝑆) / 𝑁))
15630, 26, 56redivcld 11470 . . . 4 (𝜑 → ((𝐺𝑆) / 𝑁) ∈ ℝ)
15772, 39nffv 6682 . . . . . 6 𝑡(𝐺𝑆)
158157, 84, 85nfov 7188 . . . . 5 𝑡((𝐺𝑆) / 𝑁)
159 fveq2 6672 . . . . . 6 (𝑡 = 𝑆 → (𝐺𝑡) = (𝐺𝑆))
160159oveq1d 7173 . . . . 5 (𝑡 = 𝑆 → ((𝐺𝑡) / 𝑁) = ((𝐺𝑆) / 𝑁))
16139, 158, 160, 1fvmptf 6791 . . . 4 ((𝑆𝑇 ∧ ((𝐺𝑆) / 𝑁) ∈ ℝ) → (𝐻𝑆) = ((𝐺𝑆) / 𝑁))
16222, 156, 161syl2anc 586 . . 3 (𝜑 → (𝐻𝑆) = ((𝐺𝑆) / 𝑁))
163155, 162breqtrrd 5096 . 2 (𝜑 → 0 < (𝐻𝑆))
164 nfcv 2979 . . . 4 𝐻
165 stoweidlem36.1 . . . . . 6 𝑄
166165nfel2 2998 . . . . 5 𝐻𝑄
167 nfv 1915 . . . . 5 0 < (𝐻𝑆)
168166, 167nfan 1900 . . . 4 (𝐻𝑄 ∧ 0 < (𝐻𝑆))
169 eleq1 2902 . . . . 5 ( = 𝐻 → (𝑄𝐻𝑄))
170 fveq1 6671 . . . . . 6 ( = 𝐻 → (𝑆) = (𝐻𝑆))
171170breq2d 5080 . . . . 5 ( = 𝐻 → (0 < (𝑆) ↔ 0 < (𝐻𝑆)))
172169, 171anbi12d 632 . . . 4 ( = 𝐻 → ((𝑄 ∧ 0 < (𝑆)) ↔ (𝐻𝑄 ∧ 0 < (𝐻𝑆))))
173164, 168, 172spcegf 3593 . . 3 (𝐻𝑄 → ((𝐻𝑄 ∧ 0 < (𝐻𝑆)) → ∃(𝑄 ∧ 0 < (𝑆))))
174173anabsi5 667 . 2 ((𝐻𝑄 ∧ 0 < (𝐻𝑆)) → ∃(𝑄 ∧ 0 < (𝑆)))
175154, 163, 174syl2anc 586 1 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wnf 1784  wcel 2114  wnfc 2963  wne 3018  wral 3140  {crab 3144  wss 3938   cuni 4840   class class class wbr 5068  cmpt 5148  ran crn 5558  cfv 6357  (class class class)co 7158  supcsup 8906  cc 10537  cr 10538  0cc0 10539  1c1 10540   · cmul 10544   < clt 10677  cle 10678   / cdiv 11299  (,)cioo 12741  topGenctg 16713   Cn ccn 21834  Compccmp 21996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cn 21837  df-cnp 21838  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-xms 22932  df-ms 22933  df-tms 22934
This theorem is referenced by:  stoweidlem43  42335
  Copyright terms: Public domain W3C validator