Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem38 Structured version   Visualization version   GIF version

Theorem stoweidlem38 39588
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺𝑖) is used for p(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem38.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem38.2 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem38.3 (𝜑𝑀 ∈ ℕ)
stoweidlem38.4 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem38.5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem38 ((𝜑𝑆𝑇) → (0 ≤ (𝑃𝑆) ∧ (𝑃𝑆) ≤ 1))
Distinct variable groups:   𝑓,𝑖,𝑇   𝐴,𝑓   𝑓,𝐺   𝜑,𝑓,𝑖   ,𝑖,𝑡,𝑇   𝐴,   ,𝐺,𝑡   ,𝑍   𝑖,𝑀,𝑡   𝑆,𝑖
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡,𝑖)   𝑃(𝑡,𝑓,,𝑖)   𝑄(𝑡,𝑓,,𝑖)   𝑆(𝑡,𝑓,)   𝐺(𝑖)   𝑀(𝑓,)   𝑍(𝑡,𝑓,𝑖)

Proof of Theorem stoweidlem38
StepHypRef Expression
1 stoweidlem38.3 . . . . . 6 (𝜑𝑀 ∈ ℕ)
21nnrecred 11018 . . . . 5 (𝜑 → (1 / 𝑀) ∈ ℝ)
32adantr 481 . . . 4 ((𝜑𝑆𝑇) → (1 / 𝑀) ∈ ℝ)
4 fzfid 12720 . . . . 5 ((𝜑𝑆𝑇) → (1...𝑀) ∈ Fin)
5 stoweidlem38.1 . . . . . . . 8 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
6 stoweidlem38.4 . . . . . . . 8 (𝜑𝐺:(1...𝑀)⟶𝑄)
7 stoweidlem38.5 . . . . . . . 8 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
85, 6, 7stoweidlem15 39565 . . . . . . 7 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → (((𝐺𝑖)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑆) ∧ ((𝐺𝑖)‘𝑆) ≤ 1))
98simp1d 1071 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝑖)‘𝑆) ∈ ℝ)
109an32s 845 . . . . 5 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑆) ∈ ℝ)
114, 10fsumrecl 14406 . . . 4 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ∈ ℝ)
12 1red 10007 . . . . . 6 (𝜑 → 1 ∈ ℝ)
13 0le1 10503 . . . . . . 7 0 ≤ 1
1413a1i 11 . . . . . 6 (𝜑 → 0 ≤ 1)
151nnred 10987 . . . . . 6 (𝜑𝑀 ∈ ℝ)
161nngt0d 11016 . . . . . 6 (𝜑 → 0 < 𝑀)
17 divge0 10844 . . . . . 6 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (1 / 𝑀))
1812, 14, 15, 16, 17syl22anc 1324 . . . . 5 (𝜑 → 0 ≤ (1 / 𝑀))
1918adantr 481 . . . 4 ((𝜑𝑆𝑇) → 0 ≤ (1 / 𝑀))
208simp2d 1072 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → 0 ≤ ((𝐺𝑖)‘𝑆))
2120an32s 845 . . . . 5 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ ((𝐺𝑖)‘𝑆))
224, 10, 21fsumge0 14465 . . . 4 ((𝜑𝑆𝑇) → 0 ≤ Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))
233, 11, 19, 22mulge0d 10556 . . 3 ((𝜑𝑆𝑇) → 0 ≤ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
24 stoweidlem38.2 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
255, 24, 1, 6, 7stoweidlem30 39580 . . 3 ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
2623, 25breqtrrd 4646 . 2 ((𝜑𝑆𝑇) → 0 ≤ (𝑃𝑆))
27 1red 10007 . . . . . . 7 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 1 ∈ ℝ)
288simp3d 1073 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑆𝑇) → ((𝐺𝑖)‘𝑆) ≤ 1)
2928an32s 845 . . . . . . 7 (((𝜑𝑆𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑆) ≤ 1)
304, 10, 27, 29fsumle 14469 . . . . . 6 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ Σ𝑖 ∈ (1...𝑀)1)
31 fzfid 12720 . . . . . . . . 9 (𝜑 → (1...𝑀) ∈ Fin)
32 ax-1cn 9946 . . . . . . . . 9 1 ∈ ℂ
33 fsumconst 14461 . . . . . . . . 9 (((1...𝑀) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑖 ∈ (1...𝑀)1 = ((#‘(1...𝑀)) · 1))
3431, 32, 33sylancl 693 . . . . . . . 8 (𝜑 → Σ𝑖 ∈ (1...𝑀)1 = ((#‘(1...𝑀)) · 1))
351nnnn0d 11303 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
36 hashfz1 13082 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (#‘(1...𝑀)) = 𝑀)
3735, 36syl 17 . . . . . . . . 9 (𝜑 → (#‘(1...𝑀)) = 𝑀)
3837oveq1d 6625 . . . . . . . 8 (𝜑 → ((#‘(1...𝑀)) · 1) = (𝑀 · 1))
391nncnd 10988 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
4039mulid1d 10009 . . . . . . . 8 (𝜑 → (𝑀 · 1) = 𝑀)
4134, 38, 403eqtrd 2659 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (1...𝑀)1 = 𝑀)
4241adantr 481 . . . . . 6 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)1 = 𝑀)
4330, 42breqtrd 4644 . . . . 5 ((𝜑𝑆𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ 𝑀)
4415adantr 481 . . . . . 6 ((𝜑𝑆𝑇) → 𝑀 ∈ ℝ)
45 1red 10007 . . . . . . 7 ((𝜑𝑆𝑇) → 1 ∈ ℝ)
46 0lt1 10502 . . . . . . . 8 0 < 1
4746a1i 11 . . . . . . 7 ((𝜑𝑆𝑇) → 0 < 1)
4815, 16jca 554 . . . . . . . 8 (𝜑 → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
4948adantr 481 . . . . . . 7 ((𝜑𝑆𝑇) → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
50 divgt0 10843 . . . . . . 7 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 < (1 / 𝑀))
5145, 47, 49, 50syl21anc 1322 . . . . . 6 ((𝜑𝑆𝑇) → 0 < (1 / 𝑀))
52 lemul2 10828 . . . . . 6 ((Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ((1 / 𝑀) ∈ ℝ ∧ 0 < (1 / 𝑀))) → (Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ 𝑀 ↔ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)) ≤ ((1 / 𝑀) · 𝑀)))
5311, 44, 3, 51, 52syl112anc 1327 . . . . 5 ((𝜑𝑆𝑇) → (Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆) ≤ 𝑀 ↔ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)) ≤ ((1 / 𝑀) · 𝑀)))
5443, 53mpbid 222 . . . 4 ((𝜑𝑆𝑇) → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)) ≤ ((1 / 𝑀) · 𝑀))
5525, 54eqbrtrd 4640 . . 3 ((𝜑𝑆𝑇) → (𝑃𝑆) ≤ ((1 / 𝑀) · 𝑀))
5632a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℂ)
571nnne0d 11017 . . . . . 6 (𝜑𝑀 ≠ 0)
5856, 39, 573jca 1240 . . . . 5 (𝜑 → (1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
5958adantr 481 . . . 4 ((𝜑𝑆𝑇) → (1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
60 divcan1 10646 . . . 4 ((1 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) → ((1 / 𝑀) · 𝑀) = 1)
6159, 60syl 17 . . 3 ((𝜑𝑆𝑇) → ((1 / 𝑀) · 𝑀) = 1)
6255, 61breqtrd 4644 . 2 ((𝜑𝑆𝑇) → (𝑃𝑆) ≤ 1)
6326, 62jca 554 1 ((𝜑𝑆𝑇) → (0 ≤ (𝑃𝑆) ∧ (𝑃𝑆) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  {crab 2911   class class class wbr 4618  cmpt 4678  wf 5848  cfv 5852  (class class class)co 6610  Fincfn 7907  cc 9886  cr 9887  0cc0 9888  1c1 9889   · cmul 9893   < clt 10026  cle 10027   / cdiv 10636  cn 10972  0cn0 11244  ...cfz 12276  #chash 13065  Σcsu 14358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-ico 12131  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-sum 14359
This theorem is referenced by:  stoweidlem44  39594
  Copyright terms: Public domain W3C validator