Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem41 Structured version   Visualization version   GIF version

Theorem stoweidlem41 42333
Description: This lemma is used to prove that there exists x as in Lemma 1 of [BrosowskiDeutsh] p. 90: 0 <= x(t) <= 1 for all t in T, x(t) < epsilon for all t in V, x(t) > 1 - epsilon for all t in T \ U. Here we prove the very last step of the proof of Lemma 1: "The result follows from taking x = 1 - qn";. Here 𝐸 is used to represent ε in the paper, and 𝑦 to represent qn in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem41.1 𝑡𝜑
stoweidlem41.2 𝑋 = (𝑡𝑇 ↦ (1 − (𝑦𝑡)))
stoweidlem41.3 𝐹 = (𝑡𝑇 ↦ 1)
stoweidlem41.4 𝑉𝑇
stoweidlem41.5 (𝜑𝑦𝐴)
stoweidlem41.6 (𝜑𝑦:𝑇⟶ℝ)
stoweidlem41.7 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem41.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem41.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem41.10 ((𝜑𝑤 ∈ ℝ) → (𝑡𝑇𝑤) ∈ 𝐴)
stoweidlem41.11 (𝜑𝐸 ∈ ℝ+)
stoweidlem41.12 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1))
stoweidlem41.13 (𝜑 → ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡))
stoweidlem41.14 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸)
Assertion
Ref Expression
stoweidlem41 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝑓,𝑔,𝑡,𝑦   𝐴,𝑓,𝑔,𝑡   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑤,𝑡,𝐴   𝑥,𝑡,𝐴   𝑤,𝑇   𝜑,𝑤   𝑥,𝐸   𝑥,𝑇   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑡)   𝐴(𝑦)   𝑇(𝑦)   𝑈(𝑦,𝑤,𝑡,𝑓,𝑔)   𝐸(𝑦,𝑤,𝑡,𝑓,𝑔)   𝐹(𝑥,𝑦,𝑤,𝑡)   𝑉(𝑦,𝑤,𝑡,𝑓,𝑔)   𝑋(𝑦,𝑤,𝑡,𝑓,𝑔)

Proof of Theorem stoweidlem41
StepHypRef Expression
1 stoweidlem41.1 . . . . 5 𝑡𝜑
2 1re 10643 . . . . . . . 8 1 ∈ ℝ
3 stoweidlem41.3 . . . . . . . . 9 𝐹 = (𝑡𝑇 ↦ 1)
43fvmpt2 6781 . . . . . . . 8 ((𝑡𝑇 ∧ 1 ∈ ℝ) → (𝐹𝑡) = 1)
52, 4mpan2 689 . . . . . . 7 (𝑡𝑇 → (𝐹𝑡) = 1)
65adantl 484 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) = 1)
76oveq1d 7173 . . . . 5 ((𝜑𝑡𝑇) → ((𝐹𝑡) − (𝑦𝑡)) = (1 − (𝑦𝑡)))
81, 7mpteq2da 5162 . . . 4 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝑦𝑡))) = (𝑡𝑇 ↦ (1 − (𝑦𝑡))))
9 stoweidlem41.2 . . . 4 𝑋 = (𝑡𝑇 ↦ (1 − (𝑦𝑡)))
108, 9syl6eqr 2876 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝑦𝑡))) = 𝑋)
11 stoweidlem41.10 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (𝑡𝑇𝑤) ∈ 𝐴)
1211stoweidlem4 42296 . . . . . 6 ((𝜑 ∧ 1 ∈ ℝ) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
132, 12mpan2 689 . . . . 5 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
143, 13eqeltrid 2919 . . . 4 (𝜑𝐹𝐴)
15 stoweidlem41.5 . . . 4 (𝜑𝑦𝐴)
16 nfmpt1 5166 . . . . . 6 𝑡(𝑡𝑇 ↦ 1)
173, 16nfcxfr 2977 . . . . 5 𝑡𝐹
18 nfcv 2979 . . . . 5 𝑡𝑦
19 stoweidlem41.7 . . . . 5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
20 stoweidlem41.8 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
21 stoweidlem41.9 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
2217, 18, 1, 19, 20, 21, 11stoweidlem33 42325 . . . 4 ((𝜑𝐹𝐴𝑦𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝑦𝑡))) ∈ 𝐴)
2314, 15, 22mpd3an23 1459 . . 3 (𝜑 → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝑦𝑡))) ∈ 𝐴)
2410, 23eqeltrrd 2916 . 2 (𝜑𝑋𝐴)
25 stoweidlem41.6 . . . . . . . 8 (𝜑𝑦:𝑇⟶ℝ)
2625ffvelrnda 6853 . . . . . . 7 ((𝜑𝑡𝑇) → (𝑦𝑡) ∈ ℝ)
27 1red 10644 . . . . . . 7 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
28 0red 10646 . . . . . . 7 ((𝜑𝑡𝑇) → 0 ∈ ℝ)
29 stoweidlem41.12 . . . . . . . . . 10 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1))
3029r19.21bi 3210 . . . . . . . . 9 ((𝜑𝑡𝑇) → (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1))
3130simprd 498 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝑦𝑡) ≤ 1)
32 1m0e1 11761 . . . . . . . 8 (1 − 0) = 1
3331, 32breqtrrdi 5110 . . . . . . 7 ((𝜑𝑡𝑇) → (𝑦𝑡) ≤ (1 − 0))
3426, 27, 28, 33lesubd 11246 . . . . . 6 ((𝜑𝑡𝑇) → 0 ≤ (1 − (𝑦𝑡)))
35 simpr 487 . . . . . . 7 ((𝜑𝑡𝑇) → 𝑡𝑇)
3627, 26resubcld 11070 . . . . . . 7 ((𝜑𝑡𝑇) → (1 − (𝑦𝑡)) ∈ ℝ)
379fvmpt2 6781 . . . . . . 7 ((𝑡𝑇 ∧ (1 − (𝑦𝑡)) ∈ ℝ) → (𝑋𝑡) = (1 − (𝑦𝑡)))
3835, 36, 37syl2anc 586 . . . . . 6 ((𝜑𝑡𝑇) → (𝑋𝑡) = (1 − (𝑦𝑡)))
3934, 38breqtrrd 5096 . . . . 5 ((𝜑𝑡𝑇) → 0 ≤ (𝑋𝑡))
4030simpld 497 . . . . . . . 8 ((𝜑𝑡𝑇) → 0 ≤ (𝑦𝑡))
4128, 26, 27, 40lesub2dd 11259 . . . . . . 7 ((𝜑𝑡𝑇) → (1 − (𝑦𝑡)) ≤ (1 − 0))
4241, 32breqtrdi 5109 . . . . . 6 ((𝜑𝑡𝑇) → (1 − (𝑦𝑡)) ≤ 1)
4338, 42eqbrtrd 5090 . . . . 5 ((𝜑𝑡𝑇) → (𝑋𝑡) ≤ 1)
4439, 43jca 514 . . . 4 ((𝜑𝑡𝑇) → (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1))
4544ex 415 . . 3 (𝜑 → (𝑡𝑇 → (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
461, 45ralrimi 3218 . 2 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1))
47 stoweidlem41.4 . . . . . . 7 𝑉𝑇
4847sseli 3965 . . . . . 6 (𝑡𝑉𝑡𝑇)
4948, 38sylan2 594 . . . . 5 ((𝜑𝑡𝑉) → (𝑋𝑡) = (1 − (𝑦𝑡)))
50 1red 10644 . . . . . 6 ((𝜑𝑡𝑉) → 1 ∈ ℝ)
51 stoweidlem41.11 . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
5251rpred 12434 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
5352adantr 483 . . . . . 6 ((𝜑𝑡𝑉) → 𝐸 ∈ ℝ)
5448, 26sylan2 594 . . . . . 6 ((𝜑𝑡𝑉) → (𝑦𝑡) ∈ ℝ)
55 stoweidlem41.13 . . . . . . 7 (𝜑 → ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡))
5655r19.21bi 3210 . . . . . 6 ((𝜑𝑡𝑉) → (1 − 𝐸) < (𝑦𝑡))
5750, 53, 54, 56ltsub23d 11247 . . . . 5 ((𝜑𝑡𝑉) → (1 − (𝑦𝑡)) < 𝐸)
5849, 57eqbrtrd 5090 . . . 4 ((𝜑𝑡𝑉) → (𝑋𝑡) < 𝐸)
5958ex 415 . . 3 (𝜑 → (𝑡𝑉 → (𝑋𝑡) < 𝐸))
601, 59ralrimi 3218 . 2 (𝜑 → ∀𝑡𝑉 (𝑋𝑡) < 𝐸)
61 eldifi 4105 . . . . . . 7 (𝑡 ∈ (𝑇𝑈) → 𝑡𝑇)
6261, 26sylan2 594 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑦𝑡) ∈ ℝ)
6352adantr 483 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝐸 ∈ ℝ)
64 1red 10644 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → 1 ∈ ℝ)
65 stoweidlem41.14 . . . . . . 7 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸)
6665r19.21bi 3210 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑦𝑡) < 𝐸)
6762, 63, 64, 66ltsub2dd 11255 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 − 𝐸) < (1 − (𝑦𝑡)))
6861, 38sylan2 594 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑋𝑡) = (1 − (𝑦𝑡)))
6967, 68breqtrrd 5096 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → (1 − 𝐸) < (𝑋𝑡))
7069ex 415 . . 3 (𝜑 → (𝑡 ∈ (𝑇𝑈) → (1 − 𝐸) < (𝑋𝑡)))
711, 70ralrimi 3218 . 2 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑋𝑡))
72 nfmpt1 5166 . . . . . . 7 𝑡(𝑡𝑇 ↦ (1 − (𝑦𝑡)))
739, 72nfcxfr 2977 . . . . . 6 𝑡𝑋
7473nfeq2 2997 . . . . 5 𝑡 𝑥 = 𝑋
75 fveq1 6671 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑡) = (𝑋𝑡))
7675breq2d 5080 . . . . . 6 (𝑥 = 𝑋 → (0 ≤ (𝑥𝑡) ↔ 0 ≤ (𝑋𝑡)))
7775breq1d 5078 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝑡) ≤ 1 ↔ (𝑋𝑡) ≤ 1))
7876, 77anbi12d 632 . . . . 5 (𝑥 = 𝑋 → ((0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
7974, 78ralbid 3233 . . . 4 (𝑥 = 𝑋 → (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1)))
8075breq1d 5078 . . . . 5 (𝑥 = 𝑋 → ((𝑥𝑡) < 𝐸 ↔ (𝑋𝑡) < 𝐸))
8174, 80ralbid 3233 . . . 4 (𝑥 = 𝑋 → (∀𝑡𝑉 (𝑥𝑡) < 𝐸 ↔ ∀𝑡𝑉 (𝑋𝑡) < 𝐸))
8275breq2d 5080 . . . . 5 (𝑥 = 𝑋 → ((1 − 𝐸) < (𝑥𝑡) ↔ (1 − 𝐸) < (𝑋𝑡)))
8374, 82ralbid 3233 . . . 4 (𝑥 = 𝑋 → (∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑋𝑡)))
8479, 81, 833anbi123d 1432 . . 3 (𝑥 = 𝑋 → ((∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑋𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑋𝑡))))
8584rspcev 3625 . 2 ((𝑋𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑋𝑡) ∧ (𝑋𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑋𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑋𝑡))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡)))
8624, 46, 60, 71, 85syl13anc 1368 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝑉 (𝑥𝑡) < 𝐸 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝐸) < (𝑥𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wnf 1784  wcel 2114  wral 3140  wrex 3141  cdif 3935  wss 3938   class class class wbr 5068  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872  +crp 12392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-rp 12393
This theorem is referenced by:  stoweidlem52  42344
  Copyright terms: Public domain W3C validator