Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem42 Structured version   Visualization version   GIF version

Theorem stoweidlem42 38732
Description: This lemma is used to prove that 𝑥 built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x > 1 - ε on B. Here 𝑋 is used to represent 𝑥 in the paper, and E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem42.1 𝑖𝜑
stoweidlem42.2 𝑡𝜑
stoweidlem42.3 𝑡𝑌
stoweidlem42.4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem42.5 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
stoweidlem42.6 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
stoweidlem42.7 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem42.8 (𝜑𝑀 ∈ ℕ)
stoweidlem42.9 (𝜑𝑈:(1...𝑀)⟶𝑌)
stoweidlem42.10 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
stoweidlem42.11 (𝜑𝐸 ∈ ℝ+)
stoweidlem42.12 (𝜑𝐸 < (1 / 3))
stoweidlem42.13 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
stoweidlem42.14 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
stoweidlem42.15 (𝜑𝑇 ∈ V)
stoweidlem42.16 (𝜑𝐵𝑇)
Assertion
Ref Expression
stoweidlem42 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))
Distinct variable groups:   𝑡,𝑖   𝐵,𝑖   𝑖,𝑀   𝑓,𝑔,𝑡,𝑇   𝑓,𝑖,𝑇   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔   𝑈,𝑓,𝑔,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑖,𝐸   𝑈,𝑖
Allowed substitution hints:   𝜑(𝑡,𝑖)   𝐵(𝑡,𝑓,𝑔)   𝑃(𝑡,𝑓,𝑔,𝑖)   𝐸(𝑡,𝑓,𝑔)   𝐹(𝑡,𝑖)   𝑀(𝑡)   𝑋(𝑡,𝑓,𝑔,𝑖)   𝑌(𝑡,𝑖)   𝑍(𝑡,𝑓,𝑔,𝑖)

Proof of Theorem stoweidlem42
Dummy variables 𝑎 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem42.2 . 2 𝑡𝜑
2 1red 9911 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
3 stoweidlem42.11 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
43rpred 11704 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
52, 4resubcld 10309 . . . . . . 7 (𝜑 → (1 − 𝐸) ∈ ℝ)
65adantr 479 . . . . . 6 ((𝜑𝑡𝐵) → (1 − 𝐸) ∈ ℝ)
7 stoweidlem42.8 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
84, 7nndivred 10916 . . . . . . . . 9 (𝜑 → (𝐸 / 𝑀) ∈ ℝ)
92, 8resubcld 10309 . . . . . . . 8 (𝜑 → (1 − (𝐸 / 𝑀)) ∈ ℝ)
109adantr 479 . . . . . . 7 ((𝜑𝑡𝐵) → (1 − (𝐸 / 𝑀)) ∈ ℝ)
117nnnn0d 11198 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
1211adantr 479 . . . . . . 7 ((𝜑𝑡𝐵) → 𝑀 ∈ ℕ0)
1310, 12reexpcld 12842 . . . . . 6 ((𝜑𝑡𝐵) → ((1 − (𝐸 / 𝑀))↑𝑀) ∈ ℝ)
14 elnnuz 11556 . . . . . . . . 9 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
157, 14sylib 206 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘1))
1615adantr 479 . . . . . . 7 ((𝜑𝑡𝐵) → 𝑀 ∈ (ℤ‘1))
17 stoweidlem42.1 . . . . . . . . . . 11 𝑖𝜑
18 nfv 1829 . . . . . . . . . . 11 𝑖 𝑡𝐵
1917, 18nfan 1815 . . . . . . . . . 10 𝑖(𝜑𝑡𝐵)
20 nfv 1829 . . . . . . . . . 10 𝑖 𝑎 ∈ (1...𝑀)
2119, 20nfan 1815 . . . . . . . . 9 𝑖((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀))
22 stoweidlem42.6 . . . . . . . . . . . . 13 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
23 nfcv 2750 . . . . . . . . . . . . . 14 𝑖𝑇
24 nfmpt1 4669 . . . . . . . . . . . . . 14 𝑖(𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
2523, 24nfmpt 4668 . . . . . . . . . . . . 13 𝑖(𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
2622, 25nfcxfr 2748 . . . . . . . . . . . 12 𝑖𝐹
27 nfcv 2750 . . . . . . . . . . . 12 𝑖𝑡
2826, 27nffv 6095 . . . . . . . . . . 11 𝑖(𝐹𝑡)
29 nfcv 2750 . . . . . . . . . . 11 𝑖𝑎
3028, 29nffv 6095 . . . . . . . . . 10 𝑖((𝐹𝑡)‘𝑎)
3130nfel1 2764 . . . . . . . . 9 𝑖((𝐹𝑡)‘𝑎) ∈ ℝ
3221, 31nfim 1812 . . . . . . . 8 𝑖(((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑎) ∈ ℝ)
33 eleq1 2675 . . . . . . . . . 10 (𝑖 = 𝑎 → (𝑖 ∈ (1...𝑀) ↔ 𝑎 ∈ (1...𝑀)))
3433anbi2d 735 . . . . . . . . 9 (𝑖 = 𝑎 → (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) ↔ ((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀))))
35 fveq2 6088 . . . . . . . . . 10 (𝑖 = 𝑎 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘𝑎))
3635eleq1d 2671 . . . . . . . . 9 (𝑖 = 𝑎 → (((𝐹𝑡)‘𝑖) ∈ ℝ ↔ ((𝐹𝑡)‘𝑎) ∈ ℝ))
3734, 36imbi12d 332 . . . . . . . 8 (𝑖 = 𝑎 → ((((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ) ↔ (((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑎) ∈ ℝ)))
38 stoweidlem42.16 . . . . . . . . . . . 12 (𝜑𝐵𝑇)
3938sselda 3567 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → 𝑡𝑇)
40 ovex 6555 . . . . . . . . . . . 12 (1...𝑀) ∈ V
41 mptexg 6367 . . . . . . . . . . . 12 ((1...𝑀) ∈ V → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
4240, 41mp1i 13 . . . . . . . . . . 11 ((𝜑𝑡𝐵) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
4322fvmpt2 6185 . . . . . . . . . . 11 ((𝑡𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
4439, 42, 43syl2anc 690 . . . . . . . . . 10 ((𝜑𝑡𝐵) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
45 stoweidlem42.9 . . . . . . . . . . . . . 14 (𝜑𝑈:(1...𝑀)⟶𝑌)
4645fnvinran 37992 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
47 simpl 471 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
4847, 46jca 552 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑈𝑖) ∈ 𝑌))
49 eleq1 2675 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑈𝑖) → (𝑓𝑌 ↔ (𝑈𝑖) ∈ 𝑌))
5049anbi2d 735 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝑌) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝑌)))
51 feq1 5925 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
5250, 51imbi12d 332 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ)))
53 stoweidlem42.13 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
5452, 53vtoclg 3238 . . . . . . . . . . . . 13 ((𝑈𝑖) ∈ 𝑌 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ))
5546, 48, 54sylc 62 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
5655adantlr 746 . . . . . . . . . . 11 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
5739adantr 479 . . . . . . . . . . 11 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
5856, 57ffvelrnd 6253 . . . . . . . . . 10 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
5944, 58fvmpt2d 6187 . . . . . . . . 9 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡))
6059, 58eqeltrd 2687 . . . . . . . 8 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ)
6132, 37, 60chvar 2249 . . . . . . 7 (((𝜑𝑡𝐵) ∧ 𝑎 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑎) ∈ ℝ)
62 remulcl 9877 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑎 · 𝑗) ∈ ℝ)
6362adantl 480 . . . . . . 7 (((𝜑𝑡𝐵) ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ)
6416, 61, 63seqcl 12638 . . . . . 6 ((𝜑𝑡𝐵) → (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ)
653rpcnd 11706 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℂ)
667nncnd 10883 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℂ)
677nnne0d 10912 . . . . . . . . . . . 12 (𝜑𝑀 ≠ 0)
6865, 66, 67divcan1d 10651 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 𝑀) · 𝑀) = 𝐸)
6968eqcomd 2615 . . . . . . . . . 10 (𝜑𝐸 = ((𝐸 / 𝑀) · 𝑀))
7069oveq2d 6543 . . . . . . . . 9 (𝜑 → (1 − 𝐸) = (1 − ((𝐸 / 𝑀) · 𝑀)))
71 1cnd 9912 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
7265, 66, 67divcld 10650 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑀) ∈ ℂ)
7372, 66mulcld 9916 . . . . . . . . . 10 (𝜑 → ((𝐸 / 𝑀) · 𝑀) ∈ ℂ)
7471, 73negsubd 10249 . . . . . . . . 9 (𝜑 → (1 + -((𝐸 / 𝑀) · 𝑀)) = (1 − ((𝐸 / 𝑀) · 𝑀)))
7572, 66mulneg1d 10333 . . . . . . . . . . 11 (𝜑 → (-(𝐸 / 𝑀) · 𝑀) = -((𝐸 / 𝑀) · 𝑀))
7675eqcomd 2615 . . . . . . . . . 10 (𝜑 → -((𝐸 / 𝑀) · 𝑀) = (-(𝐸 / 𝑀) · 𝑀))
7776oveq2d 6543 . . . . . . . . 9 (𝜑 → (1 + -((𝐸 / 𝑀) · 𝑀)) = (1 + (-(𝐸 / 𝑀) · 𝑀)))
7870, 74, 773eqtr2d 2649 . . . . . . . 8 (𝜑 → (1 − 𝐸) = (1 + (-(𝐸 / 𝑀) · 𝑀)))
798renegcld 10308 . . . . . . . . . 10 (𝜑 → -(𝐸 / 𝑀) ∈ ℝ)
807nnred 10882 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
81 3re 10941 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
8281a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ∈ ℝ)
83 3ne0 10962 . . . . . . . . . . . . . . . . . 18 3 ≠ 0
8483a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ≠ 0)
8582, 84rereccld 10701 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / 3) ∈ ℝ)
86 stoweidlem42.12 . . . . . . . . . . . . . . . 16 (𝜑𝐸 < (1 / 3))
87 1lt3 11043 . . . . . . . . . . . . . . . . . . 19 1 < 3
8887a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 3)
89 0lt1 10399 . . . . . . . . . . . . . . . . . . . 20 0 < 1
9089a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 1)
91 3pos 10961 . . . . . . . . . . . . . . . . . . . 20 0 < 3
9291a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 3)
93 ltdiv2 10758 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ ℝ ∧ 0 < 1) ∧ (3 ∈ ℝ ∧ 0 < 3) ∧ (1 ∈ ℝ ∧ 0 < 1)) → (1 < 3 ↔ (1 / 3) < (1 / 1)))
942, 90, 82, 92, 2, 90, 93syl222anc 1333 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 < 3 ↔ (1 / 3) < (1 / 1)))
9588, 94mpbid 220 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 / 3) < (1 / 1))
96 1div1e1 10566 . . . . . . . . . . . . . . . . 17 (1 / 1) = 1
9795, 96syl6breq 4618 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / 3) < 1)
984, 85, 2, 86, 97lttrd 10049 . . . . . . . . . . . . . . 15 (𝜑𝐸 < 1)
997nnge1d 10910 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ 𝑀)
1004, 2, 80, 98, 99ltletrd 10048 . . . . . . . . . . . . . 14 (𝜑𝐸 < 𝑀)
1014, 80, 100ltled 10036 . . . . . . . . . . . . 13 (𝜑𝐸𝑀)
1023rpregt0d 11710 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
1037nngt0d 10911 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑀)
104 lediv2 10762 . . . . . . . . . . . . . 14 (((𝐸 ∈ ℝ ∧ 0 < 𝐸) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (𝐸𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 𝐸)))
105102, 80, 103, 102, 104syl121anc 1322 . . . . . . . . . . . . 13 (𝜑 → (𝐸𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 𝐸)))
106101, 105mpbid 220 . . . . . . . . . . . 12 (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 𝐸))
1073rpcnne0d 11713 . . . . . . . . . . . . 13 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
108 divid 10563 . . . . . . . . . . . . 13 ((𝐸 ∈ ℂ ∧ 𝐸 ≠ 0) → (𝐸 / 𝐸) = 1)
109107, 108syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐸 / 𝐸) = 1)
110106, 109breqtrd 4603 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑀) ≤ 1)
1118, 2lenegd 10455 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 𝑀) ≤ 1 ↔ -1 ≤ -(𝐸 / 𝑀)))
112110, 111mpbid 220 . . . . . . . . . 10 (𝜑 → -1 ≤ -(𝐸 / 𝑀))
113 bernneq 12807 . . . . . . . . . 10 ((-(𝐸 / 𝑀) ∈ ℝ ∧ 𝑀 ∈ ℕ0 ∧ -1 ≤ -(𝐸 / 𝑀)) → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 + -(𝐸 / 𝑀))↑𝑀))
11479, 11, 112, 113syl3anc 1317 . . . . . . . . 9 (𝜑 → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 + -(𝐸 / 𝑀))↑𝑀))
11571, 72negsubd 10249 . . . . . . . . . 10 (𝜑 → (1 + -(𝐸 / 𝑀)) = (1 − (𝐸 / 𝑀)))
116115oveq1d 6542 . . . . . . . . 9 (𝜑 → ((1 + -(𝐸 / 𝑀))↑𝑀) = ((1 − (𝐸 / 𝑀))↑𝑀))
117114, 116breqtrd 4603 . . . . . . . 8 (𝜑 → (1 + (-(𝐸 / 𝑀) · 𝑀)) ≤ ((1 − (𝐸 / 𝑀))↑𝑀))
11878, 117eqbrtrd 4599 . . . . . . 7 (𝜑 → (1 − 𝐸) ≤ ((1 − (𝐸 / 𝑀))↑𝑀))
119118adantr 479 . . . . . 6 ((𝜑𝑡𝐵) → (1 − 𝐸) ≤ ((1 − (𝐸 / 𝑀))↑𝑀))
120 eqid 2609 . . . . . . 7 seq1( · , (𝐹𝑡)) = seq1( · , (𝐹𝑡))
1217adantr 479 . . . . . . 7 ((𝜑𝑡𝐵) → 𝑀 ∈ ℕ)
122 eqid 2609 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
12319, 58, 122fmptdf 6279 . . . . . . . 8 ((𝜑𝑡𝐵) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ)
12444feq1d 5929 . . . . . . . 8 ((𝜑𝑡𝐵) → ((𝐹𝑡):(1...𝑀)⟶ℝ ↔ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ))
125123, 124mpbird 245 . . . . . . 7 ((𝜑𝑡𝐵) → (𝐹𝑡):(1...𝑀)⟶ℝ)
126 stoweidlem42.10 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝐵 (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
127126r19.21bi 2915 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝐵) → (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
128127an32s 841 . . . . . . . 8 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (1 − (𝐸 / 𝑀)) < ((𝑈𝑖)‘𝑡))
129128, 59breqtrrd 4605 . . . . . . 7 (((𝜑𝑡𝐵) ∧ 𝑖 ∈ (1...𝑀)) → (1 − (𝐸 / 𝑀)) < ((𝐹𝑡)‘𝑖))
13072addid2d 10088 . . . . . . . . . . 11 (𝜑 → (0 + (𝐸 / 𝑀)) = (𝐸 / 𝑀))
131 lediv2 10762 . . . . . . . . . . . . . . 15 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
1322, 90, 80, 103, 102, 131syl221anc 1328 . . . . . . . . . . . . . 14 (𝜑 → (1 ≤ 𝑀 ↔ (𝐸 / 𝑀) ≤ (𝐸 / 1)))
13399, 132mpbid 220 . . . . . . . . . . . . 13 (𝜑 → (𝐸 / 𝑀) ≤ (𝐸 / 1))
13465div1d 10642 . . . . . . . . . . . . 13 (𝜑 → (𝐸 / 1) = 𝐸)
135133, 134breqtrd 4603 . . . . . . . . . . . 12 (𝜑 → (𝐸 / 𝑀) ≤ 𝐸)
1368, 4, 2, 135, 98lelttrd 10046 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑀) < 1)
137130, 136eqbrtrd 4599 . . . . . . . . . 10 (𝜑 → (0 + (𝐸 / 𝑀)) < 1)
138 0red 9897 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
139138, 8, 2ltaddsubd 10476 . . . . . . . . . 10 (𝜑 → ((0 + (𝐸 / 𝑀)) < 1 ↔ 0 < (1 − (𝐸 / 𝑀))))
140137, 139mpbid 220 . . . . . . . . 9 (𝜑 → 0 < (1 − (𝐸 / 𝑀)))
1419, 140elrpd 11701 . . . . . . . 8 (𝜑 → (1 − (𝐸 / 𝑀)) ∈ ℝ+)
142141adantr 479 . . . . . . 7 ((𝜑𝑡𝐵) → (1 − (𝐸 / 𝑀)) ∈ ℝ+)
14328, 19, 120, 121, 125, 129, 142stoweidlem3 38693 . . . . . 6 ((𝜑𝑡𝐵) → ((1 − (𝐸 / 𝑀))↑𝑀) < (seq1( · , (𝐹𝑡))‘𝑀))
1446, 13, 64, 119, 143lelttrd 10046 . . . . 5 ((𝜑𝑡𝐵) → (1 − 𝐸) < (seq1( · , (𝐹𝑡))‘𝑀))
145 stoweidlem42.7 . . . . . . 7 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
146145fvmpt2 6185 . . . . . 6 ((𝑡𝑇 ∧ (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
14739, 64, 146syl2anc 690 . . . . 5 ((𝜑𝑡𝐵) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
148144, 147breqtrrd 4605 . . . 4 ((𝜑𝑡𝐵) → (1 − 𝐸) < (𝑍𝑡))
149 simpl 471 . . . . 5 ((𝜑𝑡𝐵) → 𝜑)
150 stoweidlem42.3 . . . . . 6 𝑡𝑌
151 stoweidlem42.4 . . . . . 6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
152 stoweidlem42.5 . . . . . 6 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
153 stoweidlem42.15 . . . . . 6 (𝜑𝑇 ∈ V)
154 stoweidlem42.14 . . . . . 6 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
15517, 150, 151, 152, 22, 145, 153, 7, 45, 53, 154fmuldfeq 38447 . . . . 5 ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
156149, 39, 155syl2anc 690 . . . 4 ((𝜑𝑡𝐵) → (𝑋𝑡) = (𝑍𝑡))
157148, 156breqtrrd 4605 . . 3 ((𝜑𝑡𝐵) → (1 − 𝐸) < (𝑋𝑡))
158157ex 448 . 2 (𝜑 → (𝑡𝐵 → (1 − 𝐸) < (𝑋𝑡)))
1591, 158ralrimi 2939 1 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝑋𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wnf 1698  wcel 1976  wnfc 2737  wne 2779  wral 2895  Vcvv 3172  wss 3539   class class class wbr 4577  cmpt 4637  wf 5786  cfv 5790  (class class class)co 6527  cmpt2 6529  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797   < clt 9930  cle 9931  cmin 10117  -cneg 10118   / cdiv 10533  cn 10867  3c3 10918  0cn0 11139  cuz 11519  +crp 11664  ...cfz 12152  seqcseq 12618  cexp 12677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-fz 12153  df-fzo 12290  df-seq 12619  df-exp 12678
This theorem is referenced by:  stoweidlem51  38741
  Copyright terms: Public domain W3C validator