Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem43 Structured version   Visualization version   GIF version

Theorem stoweidlem43 38735
Description: This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function pt in the subalgebra, such that pt( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Hera Z is used for t0 , S is used for t e. T - U , h is used for pt. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem43.1 𝑔𝜑
stoweidlem43.2 𝑡𝜑
stoweidlem43.3 𝑄
stoweidlem43.4 𝐾 = (topGen‘ran (,))
stoweidlem43.5 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem43.6 𝑇 = 𝐽
stoweidlem43.7 (𝜑𝐽 ∈ Comp)
stoweidlem43.8 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem43.9 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑙𝑡))) ∈ 𝐴)
stoweidlem43.10 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴)
stoweidlem43.11 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem43.12 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡))
stoweidlem43.13 (𝜑𝑈𝐽)
stoweidlem43.14 (𝜑𝑍𝑈)
stoweidlem43.15 (𝜑𝑆 ∈ (𝑇𝑈))
Assertion
Ref Expression
stoweidlem43 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Distinct variable groups:   𝑓,𝑔,𝑙,𝑡,𝐴   𝑓,,𝑇,𝑡   𝑇,𝑙   𝑓,𝑟,𝑔,𝑡,𝐴   𝑥,𝑓,𝑔,𝑡,𝐴   𝑄,𝑓   𝑆,𝑓,𝑔,𝑙,𝑡   𝑓,𝑍,𝑔,𝑙,𝑡   𝜑,𝑓,𝑙   𝐴,   𝑆,   ,𝑍   𝑇,𝑟   𝑆,𝑟   𝜑,𝑟   𝑥,𝑇   𝑥,𝑆   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,𝑔,)   𝑄(𝑥,𝑡,𝑔,,𝑟,𝑙)   𝑇(𝑔)   𝑈(𝑥,𝑡,𝑓,𝑔,,𝑟,𝑙)   𝐽(𝑥,𝑡,𝑓,𝑔,,𝑟,𝑙)   𝐾(𝑥,𝑡,𝑓,𝑔,,𝑟,𝑙)   𝑍(𝑟)

Proof of Theorem stoweidlem43
Dummy variables 𝑠 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem43.1 . . 3 𝑔𝜑
2 nfv 1828 . . 3 𝑔𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)
3 stoweidlem43.15 . . . . . 6 (𝜑𝑆 ∈ (𝑇𝑈))
43eldifad 3546 . . . . 5 (𝜑𝑆𝑇)
5 stoweidlem43.14 . . . . . . 7 (𝜑𝑍𝑈)
6 stoweidlem43.13 . . . . . . 7 (𝜑𝑈𝐽)
7 elunii 4366 . . . . . . 7 ((𝑍𝑈𝑈𝐽) → 𝑍 𝐽)
85, 6, 7syl2anc 690 . . . . . 6 (𝜑𝑍 𝐽)
9 stoweidlem43.6 . . . . . 6 𝑇 = 𝐽
108, 9syl6eleqr 2693 . . . . 5 (𝜑𝑍𝑇)
113eldifbd 3547 . . . . . . 7 (𝜑 → ¬ 𝑆𝑈)
12 nelne2 2873 . . . . . . 7 ((𝑍𝑈 ∧ ¬ 𝑆𝑈) → 𝑍𝑆)
135, 11, 12syl2anc 690 . . . . . 6 (𝜑𝑍𝑆)
1413necomd 2831 . . . . 5 (𝜑𝑆𝑍)
154, 10, 143jca 1234 . . . 4 (𝜑 → (𝑆𝑇𝑍𝑇𝑆𝑍))
16 simpr2 1060 . . . . . 6 ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → 𝑍𝑇)
17 stoweidlem43.2 . . . . . . . . 9 𝑡𝜑
18 nfv 1828 . . . . . . . . 9 𝑡(𝑆𝑇𝑍𝑇𝑆𝑍)
1917, 18nfan 1814 . . . . . . . 8 𝑡(𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍))
20 nfv 1828 . . . . . . . 8 𝑡𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍)
2119, 20nfim 1811 . . . . . . 7 𝑡((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍))
22 eleq1 2670 . . . . . . . . . 10 (𝑡 = 𝑍 → (𝑡𝑇𝑍𝑇))
23 neeq2 2839 . . . . . . . . . 10 (𝑡 = 𝑍 → (𝑆𝑡𝑆𝑍))
2422, 233anbi23d 1393 . . . . . . . . 9 (𝑡 = 𝑍 → ((𝑆𝑇𝑡𝑇𝑆𝑡) ↔ (𝑆𝑇𝑍𝑇𝑆𝑍)))
2524anbi2d 735 . . . . . . . 8 (𝑡 = 𝑍 → ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) ↔ (𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍))))
26 fveq2 6083 . . . . . . . . . 10 (𝑡 = 𝑍 → (𝑔𝑡) = (𝑔𝑍))
2726neeq2d 2836 . . . . . . . . 9 (𝑡 = 𝑍 → ((𝑔𝑆) ≠ (𝑔𝑡) ↔ (𝑔𝑆) ≠ (𝑔𝑍)))
2827rexbidv 3028 . . . . . . . 8 (𝑡 = 𝑍 → (∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡) ↔ ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍)))
2925, 28imbi12d 332 . . . . . . 7 (𝑡 = 𝑍 → (((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡)) ↔ ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍))))
30 simpr1 1059 . . . . . . . 8 ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → 𝑆𝑇)
31 eleq1 2670 . . . . . . . . . . . 12 (𝑟 = 𝑆 → (𝑟𝑇𝑆𝑇))
32 neeq1 2838 . . . . . . . . . . . 12 (𝑟 = 𝑆 → (𝑟𝑡𝑆𝑡))
3331, 323anbi13d 1392 . . . . . . . . . . 11 (𝑟 = 𝑆 → ((𝑟𝑇𝑡𝑇𝑟𝑡) ↔ (𝑆𝑇𝑡𝑇𝑆𝑡)))
3433anbi2d 735 . . . . . . . . . 10 (𝑟 = 𝑆 → ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) ↔ (𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡))))
35 fveq2 6083 . . . . . . . . . . . 12 (𝑟 = 𝑆 → (𝑔𝑟) = (𝑔𝑆))
3635neeq1d 2835 . . . . . . . . . . 11 (𝑟 = 𝑆 → ((𝑔𝑟) ≠ (𝑔𝑡) ↔ (𝑔𝑆) ≠ (𝑔𝑡)))
3736rexbidv 3028 . . . . . . . . . 10 (𝑟 = 𝑆 → (∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡) ↔ ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡)))
3834, 37imbi12d 332 . . . . . . . . 9 (𝑟 = 𝑆 → (((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡)) ↔ ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡))))
39 stoweidlem43.12 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡))
4039a1i 11 . . . . . . . . 9 (𝑟𝑇 → ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡)))
4138, 40vtoclga 3239 . . . . . . . 8 (𝑆𝑇 → ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡)))
4230, 41mpcom 37 . . . . . . 7 ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡))
4321, 29, 42vtoclg1f 3232 . . . . . 6 (𝑍𝑇 → ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍)))
4416, 43mpcom 37 . . . . 5 ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍))
45 df-rex 2896 . . . . 5 (∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍) ↔ ∃𝑔(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
4644, 45sylib 206 . . . 4 ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
4715, 46mpdan 698 . . 3 (𝜑 → ∃𝑔(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
48 nfv 1828 . . . . . 6 𝑡(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))
4917, 48nfan 1814 . . . . 5 𝑡(𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
50 nfcv 2745 . . . . 5 𝑡𝑔
51 eqid 2604 . . . . 5 (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))
52 stoweidlem43.4 . . . . . . 7 𝐾 = (topGen‘ran (,))
53 eqid 2604 . . . . . . 7 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
54 stoweidlem43.8 . . . . . . . 8 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
5554sselda 3562 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓 ∈ (𝐽 Cn 𝐾))
5652, 9, 53, 55fcnre 38005 . . . . . 6 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
5756adantlr 746 . . . . 5 (((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
58 stoweidlem43.9 . . . . . 6 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑙𝑡))) ∈ 𝐴)
59583adant1r 1310 . . . . 5 (((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) ∧ 𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑙𝑡))) ∈ 𝐴)
60 stoweidlem43.11 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
6160adantlr 746 . . . . 5 (((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
624adantr 479 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → 𝑆𝑇)
6310adantr 479 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → 𝑍𝑇)
64 simprl 789 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → 𝑔𝐴)
65 simprr 791 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → (𝑔𝑆) ≠ (𝑔𝑍))
6649, 50, 51, 57, 59, 61, 62, 63, 64, 65stoweidlem23 38715 . . . 4 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0))
67 eleq1 2670 . . . . . . . 8 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → (𝑓𝐴 ↔ (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴))
68 fveq1 6082 . . . . . . . . 9 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → (𝑓𝑆) = ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆))
69 fveq1 6082 . . . . . . . . 9 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → (𝑓𝑍) = ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍))
7068, 69neeq12d 2837 . . . . . . . 8 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → ((𝑓𝑆) ≠ (𝑓𝑍) ↔ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍)))
7169eqeq1d 2606 . . . . . . . 8 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → ((𝑓𝑍) = 0 ↔ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0))
7267, 70, 713anbi123d 1390 . . . . . . 7 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → ((𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0) ↔ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0)))
7372spcegv 3261 . . . . . 6 ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 → (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)))
74733ad2ant1 1074 . . . . 5 (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)))
7574pm2.43i 49 . . . 4 (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
7666, 75syl 17 . . 3 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
771, 2, 47, 76exlimdd 2072 . 2 (𝜑 → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
78 stoweidlem43.3 . . . . 5 𝑄
79 nfmpt1 4664 . . . . 5 𝑡(𝑡𝑇 ↦ (((𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))‘𝑡) / sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < )))
80 nfcv 2745 . . . . 5 𝑡𝑓
81 nfcv 2745 . . . . 5 𝑡(𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))
82 nfv 1828 . . . . . 6 𝑡(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)
8317, 82nfan 1814 . . . . 5 𝑡(𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
84 stoweidlem43.5 . . . . 5 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
85 fveq2 6083 . . . . . . 7 (𝑠 = 𝑡 → (𝑓𝑠) = (𝑓𝑡))
8685, 85oveq12d 6540 . . . . . 6 (𝑠 = 𝑡 → ((𝑓𝑠) · (𝑓𝑠)) = ((𝑓𝑡) · (𝑓𝑡)))
8786cbvmptv 4667 . . . . 5 (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑓𝑡)))
88 eqid 2604 . . . . 5 sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < ) = sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < )
89 eqid 2604 . . . . 5 (𝑡𝑇 ↦ (((𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))‘𝑡) / sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < ))) = (𝑡𝑇 ↦ (((𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))‘𝑡) / sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < )))
90 stoweidlem43.7 . . . . . 6 (𝜑𝐽 ∈ Comp)
9190adantr 479 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝐽 ∈ Comp)
9254adantr 479 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝐴 ⊆ (𝐽 Cn 𝐾))
93 eleq1 2670 . . . . . . . . 9 (𝑓 = 𝑘 → (𝑓𝐴𝑘𝐴))
94933anbi2d 1395 . . . . . . . 8 (𝑓 = 𝑘 → ((𝜑𝑓𝐴𝑙𝐴) ↔ (𝜑𝑘𝐴𝑙𝐴)))
95 fveq1 6082 . . . . . . . . . . 11 (𝑓 = 𝑘 → (𝑓𝑡) = (𝑘𝑡))
9695oveq1d 6537 . . . . . . . . . 10 (𝑓 = 𝑘 → ((𝑓𝑡) · (𝑙𝑡)) = ((𝑘𝑡) · (𝑙𝑡)))
9796mpteq2dv 4662 . . . . . . . . 9 (𝑓 = 𝑘 → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) = (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))))
9897eleq1d 2666 . . . . . . . 8 (𝑓 = 𝑘 → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴))
9994, 98imbi12d 332 . . . . . . 7 (𝑓 = 𝑘 → (((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴) ↔ ((𝜑𝑘𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴)))
100 stoweidlem43.10 . . . . . . 7 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴)
10199, 100chvarv 2244 . . . . . 6 ((𝜑𝑘𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴)
1021013adant1r 1310 . . . . 5 (((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) ∧ 𝑘𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴)
10360adantlr 746 . . . . 5 (((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
1044adantr 479 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝑆𝑇)
10510adantr 479 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝑍𝑇)
106 simpr1 1059 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝑓𝐴)
107 simpr2 1060 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → (𝑓𝑆) ≠ (𝑓𝑍))
108 simpr3 1061 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → (𝑓𝑍) = 0)
10978, 79, 80, 81, 83, 52, 84, 9, 87, 88, 89, 91, 92, 102, 103, 104, 105, 106, 107, 108stoweidlem36 38728 . . . 4 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → ∃(𝑄 ∧ 0 < (𝑆)))
110109ex 448 . . 3 (𝜑 → ((𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0) → ∃(𝑄 ∧ 0 < (𝑆))))
111110exlimdv 1846 . 2 (𝜑 → (∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0) → ∃(𝑄 ∧ 0 < (𝑆))))
11277, 111mpd 15 1 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1030   = wceq 1474  wex 1694  wnf 1698  wcel 1975  wnfc 2732  wne 2774  wral 2890  wrex 2891  {crab 2894  cdif 3531  wss 3534   cuni 4361   class class class wbr 4572  cmpt 4632  ran crn 5024  wf 5781  cfv 5785  (class class class)co 6522  supcsup 8201  cr 9786  0cc0 9787  1c1 9788   + caddc 9790   · cmul 9792   < clt 9925  cle 9926  cmin 10112   / cdiv 10528  (,)cioo 11997  topGenctg 15862   Cn ccn 20775  Compccmp 20936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-inf2 8393  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864  ax-pre-sup 9865  ax-mulf 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-int 4400  df-iun 4446  df-iin 4447  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-se 4983  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-isom 5794  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-of 6767  df-om 6930  df-1st 7031  df-2nd 7032  df-supp 7155  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-1o 7419  df-2o 7420  df-oadd 7423  df-er 7601  df-map 7718  df-ixp 7767  df-en 7814  df-dom 7815  df-sdom 7816  df-fin 7817  df-fsupp 8131  df-fi 8172  df-sup 8203  df-inf 8204  df-oi 8270  df-card 8620  df-cda 8845  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-div 10529  df-nn 10863  df-2 10921  df-3 10922  df-4 10923  df-5 10924  df-6 10925  df-7 10926  df-8 10927  df-9 10928  df-n0 11135  df-z 11206  df-dec 11321  df-uz 11515  df-q 11616  df-rp 11660  df-xneg 11773  df-xadd 11774  df-xmul 11775  df-ioo 12001  df-icc 12004  df-fz 12148  df-fzo 12285  df-seq 12614  df-exp 12673  df-hash 12930  df-cj 13628  df-re 13629  df-im 13630  df-sqrt 13764  df-abs 13765  df-struct 15638  df-ndx 15639  df-slot 15640  df-base 15641  df-sets 15642  df-ress 15643  df-plusg 15722  df-mulr 15723  df-starv 15724  df-sca 15725  df-vsca 15726  df-ip 15727  df-tset 15728  df-ple 15729  df-ds 15732  df-unif 15733  df-hom 15734  df-cco 15735  df-rest 15847  df-topn 15848  df-0g 15866  df-gsum 15867  df-topgen 15868  df-pt 15869  df-prds 15872  df-xrs 15926  df-qtop 15931  df-imas 15932  df-xps 15934  df-mre 16010  df-mrc 16011  df-acs 16013  df-mgm 17006  df-sgrp 17048  df-mnd 17059  df-submnd 17100  df-mulg 17305  df-cntz 17514  df-cmn 17959  df-psmet 19500  df-xmet 19501  df-met 19502  df-bl 19503  df-mopn 19504  df-cnfld 19509  df-top 20458  df-bases 20459  df-topon 20460  df-topsp 20461  df-cn 20778  df-cnp 20779  df-cmp 20937  df-tx 21112  df-hmeo 21305  df-xms 21871  df-ms 21872  df-tms 21873
This theorem is referenced by:  stoweidlem46  38738
  Copyright terms: Public domain W3C validator