Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem43 Structured version   Visualization version   GIF version

Theorem stoweidlem43 42335
Description: This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function pt in the subalgebra, such that pt( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Hera Z is used for t0 , S is used for t e. T - U , h is used for pt. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem43.1 𝑔𝜑
stoweidlem43.2 𝑡𝜑
stoweidlem43.3 𝑄
stoweidlem43.4 𝐾 = (topGen‘ran (,))
stoweidlem43.5 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem43.6 𝑇 = 𝐽
stoweidlem43.7 (𝜑𝐽 ∈ Comp)
stoweidlem43.8 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem43.9 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑙𝑡))) ∈ 𝐴)
stoweidlem43.10 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴)
stoweidlem43.11 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem43.12 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡))
stoweidlem43.13 (𝜑𝑈𝐽)
stoweidlem43.14 (𝜑𝑍𝑈)
stoweidlem43.15 (𝜑𝑆 ∈ (𝑇𝑈))
Assertion
Ref Expression
stoweidlem43 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Distinct variable groups:   𝑓,𝑔,𝑙,𝑡,𝐴   𝑓,,𝑇,𝑡   𝑇,𝑙   𝑓,𝑟,𝑔,𝑡,𝐴   𝑥,𝑓,𝑔,𝑡,𝐴   𝑄,𝑓   𝑆,𝑓,𝑔,𝑙,𝑡   𝑓,𝑍,𝑔,𝑙,𝑡   𝜑,𝑓,𝑙   𝐴,   𝑆,   ,𝑍   𝑇,𝑟   𝑆,𝑟   𝜑,𝑟   𝑥,𝑇   𝑥,𝑆   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,𝑔,)   𝑄(𝑥,𝑡,𝑔,,𝑟,𝑙)   𝑇(𝑔)   𝑈(𝑥,𝑡,𝑓,𝑔,,𝑟,𝑙)   𝐽(𝑥,𝑡,𝑓,𝑔,,𝑟,𝑙)   𝐾(𝑥,𝑡,𝑓,𝑔,,𝑟,𝑙)   𝑍(𝑟)

Proof of Theorem stoweidlem43
Dummy variables 𝑠 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem43.1 . . 3 𝑔𝜑
2 nfv 1915 . . 3 𝑔𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)
3 stoweidlem43.15 . . . . . 6 (𝜑𝑆 ∈ (𝑇𝑈))
43eldifad 3950 . . . . 5 (𝜑𝑆𝑇)
5 stoweidlem43.14 . . . . . . 7 (𝜑𝑍𝑈)
6 stoweidlem43.13 . . . . . . 7 (𝜑𝑈𝐽)
7 elunii 4845 . . . . . . 7 ((𝑍𝑈𝑈𝐽) → 𝑍 𝐽)
85, 6, 7syl2anc 586 . . . . . 6 (𝜑𝑍 𝐽)
9 stoweidlem43.6 . . . . . 6 𝑇 = 𝐽
108, 9eleqtrrdi 2926 . . . . 5 (𝜑𝑍𝑇)
113eldifbd 3951 . . . . . . 7 (𝜑 → ¬ 𝑆𝑈)
12 nelne2 3117 . . . . . . 7 ((𝑍𝑈 ∧ ¬ 𝑆𝑈) → 𝑍𝑆)
135, 11, 12syl2anc 586 . . . . . 6 (𝜑𝑍𝑆)
1413necomd 3073 . . . . 5 (𝜑𝑆𝑍)
154, 10, 143jca 1124 . . . 4 (𝜑 → (𝑆𝑇𝑍𝑇𝑆𝑍))
16 simpr2 1191 . . . . . 6 ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → 𝑍𝑇)
17 stoweidlem43.2 . . . . . . . . 9 𝑡𝜑
18 nfv 1915 . . . . . . . . 9 𝑡(𝑆𝑇𝑍𝑇𝑆𝑍)
1917, 18nfan 1900 . . . . . . . 8 𝑡(𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍))
20 nfv 1915 . . . . . . . 8 𝑡𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍)
2119, 20nfim 1897 . . . . . . 7 𝑡((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍))
22 eleq1 2902 . . . . . . . . . 10 (𝑡 = 𝑍 → (𝑡𝑇𝑍𝑇))
23 neeq2 3081 . . . . . . . . . 10 (𝑡 = 𝑍 → (𝑆𝑡𝑆𝑍))
2422, 233anbi23d 1435 . . . . . . . . 9 (𝑡 = 𝑍 → ((𝑆𝑇𝑡𝑇𝑆𝑡) ↔ (𝑆𝑇𝑍𝑇𝑆𝑍)))
2524anbi2d 630 . . . . . . . 8 (𝑡 = 𝑍 → ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) ↔ (𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍))))
26 fveq2 6672 . . . . . . . . . 10 (𝑡 = 𝑍 → (𝑔𝑡) = (𝑔𝑍))
2726neeq2d 3078 . . . . . . . . 9 (𝑡 = 𝑍 → ((𝑔𝑆) ≠ (𝑔𝑡) ↔ (𝑔𝑆) ≠ (𝑔𝑍)))
2827rexbidv 3299 . . . . . . . 8 (𝑡 = 𝑍 → (∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡) ↔ ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍)))
2925, 28imbi12d 347 . . . . . . 7 (𝑡 = 𝑍 → (((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡)) ↔ ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍))))
30 simpr1 1190 . . . . . . . 8 ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → 𝑆𝑇)
31 eleq1 2902 . . . . . . . . . . . 12 (𝑟 = 𝑆 → (𝑟𝑇𝑆𝑇))
32 neeq1 3080 . . . . . . . . . . . 12 (𝑟 = 𝑆 → (𝑟𝑡𝑆𝑡))
3331, 323anbi13d 1434 . . . . . . . . . . 11 (𝑟 = 𝑆 → ((𝑟𝑇𝑡𝑇𝑟𝑡) ↔ (𝑆𝑇𝑡𝑇𝑆𝑡)))
3433anbi2d 630 . . . . . . . . . 10 (𝑟 = 𝑆 → ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) ↔ (𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡))))
35 fveq2 6672 . . . . . . . . . . . 12 (𝑟 = 𝑆 → (𝑔𝑟) = (𝑔𝑆))
3635neeq1d 3077 . . . . . . . . . . 11 (𝑟 = 𝑆 → ((𝑔𝑟) ≠ (𝑔𝑡) ↔ (𝑔𝑆) ≠ (𝑔𝑡)))
3736rexbidv 3299 . . . . . . . . . 10 (𝑟 = 𝑆 → (∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡) ↔ ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡)))
3834, 37imbi12d 347 . . . . . . . . 9 (𝑟 = 𝑆 → (((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡)) ↔ ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡))))
39 stoweidlem43.12 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡))
4039a1i 11 . . . . . . . . 9 (𝑟𝑇 → ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑔𝐴 (𝑔𝑟) ≠ (𝑔𝑡)))
4138, 40vtoclga 3576 . . . . . . . 8 (𝑆𝑇 → ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡)))
4230, 41mpcom 38 . . . . . . 7 ((𝜑 ∧ (𝑆𝑇𝑡𝑇𝑆𝑡)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑡))
4321, 29, 42vtoclg1f 3568 . . . . . 6 (𝑍𝑇 → ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍)))
4416, 43mpcom 38 . . . . 5 ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍))
45 df-rex 3146 . . . . 5 (∃𝑔𝐴 (𝑔𝑆) ≠ (𝑔𝑍) ↔ ∃𝑔(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
4644, 45sylib 220 . . . 4 ((𝜑 ∧ (𝑆𝑇𝑍𝑇𝑆𝑍)) → ∃𝑔(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
4715, 46mpdan 685 . . 3 (𝜑 → ∃𝑔(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
48 nfv 1915 . . . . . 6 𝑡(𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))
4917, 48nfan 1900 . . . . 5 𝑡(𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍)))
50 nfcv 2979 . . . . 5 𝑡𝑔
51 eqid 2823 . . . . 5 (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))
52 stoweidlem43.4 . . . . . . 7 𝐾 = (topGen‘ran (,))
53 eqid 2823 . . . . . . 7 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
54 stoweidlem43.8 . . . . . . . 8 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
5554sselda 3969 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓 ∈ (𝐽 Cn 𝐾))
5652, 9, 53, 55fcnre 41289 . . . . . 6 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
5756adantlr 713 . . . . 5 (((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
58 stoweidlem43.9 . . . . . 6 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑙𝑡))) ∈ 𝐴)
59583adant1r 1173 . . . . 5 (((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) ∧ 𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑙𝑡))) ∈ 𝐴)
60 stoweidlem43.11 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
6160adantlr 713 . . . . 5 (((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
624adantr 483 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → 𝑆𝑇)
6310adantr 483 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → 𝑍𝑇)
64 simprl 769 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → 𝑔𝐴)
65 simprr 771 . . . . 5 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → (𝑔𝑆) ≠ (𝑔𝑍))
6649, 50, 51, 57, 59, 61, 62, 63, 64, 65stoweidlem23 42315 . . . 4 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0))
67 eleq1 2902 . . . . . . . 8 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → (𝑓𝐴 ↔ (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴))
68 fveq1 6671 . . . . . . . . 9 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → (𝑓𝑆) = ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆))
69 fveq1 6671 . . . . . . . . 9 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → (𝑓𝑍) = ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍))
7068, 69neeq12d 3079 . . . . . . . 8 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → ((𝑓𝑆) ≠ (𝑓𝑍) ↔ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍)))
7169eqeq1d 2825 . . . . . . . 8 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → ((𝑓𝑍) = 0 ↔ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0))
7267, 70, 713anbi123d 1432 . . . . . . 7 (𝑓 = (𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) → ((𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0) ↔ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0)))
7372spcegv 3599 . . . . . 6 ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 → (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)))
74733ad2ant1 1129 . . . . 5 (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)))
7574pm2.43i 52 . . . 4 (((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍))) ∈ 𝐴 ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑆) ≠ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) ∧ ((𝑡𝑇 ↦ ((𝑔𝑡) − (𝑔𝑍)))‘𝑍) = 0) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
7666, 75syl 17 . . 3 ((𝜑 ∧ (𝑔𝐴 ∧ (𝑔𝑆) ≠ (𝑔𝑍))) → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
771, 2, 47, 76exlimdd 2220 . 2 (𝜑 → ∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
78 stoweidlem43.3 . . . . 5 𝑄
79 nfmpt1 5166 . . . . 5 𝑡(𝑡𝑇 ↦ (((𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))‘𝑡) / sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < )))
80 nfcv 2979 . . . . 5 𝑡𝑓
81 nfcv 2979 . . . . 5 𝑡(𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))
82 nfv 1915 . . . . . 6 𝑡(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)
8317, 82nfan 1900 . . . . 5 𝑡(𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0))
84 stoweidlem43.5 . . . . 5 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
85 fveq2 6672 . . . . . . 7 (𝑠 = 𝑡 → (𝑓𝑠) = (𝑓𝑡))
8685, 85oveq12d 7176 . . . . . 6 (𝑠 = 𝑡 → ((𝑓𝑠) · (𝑓𝑠)) = ((𝑓𝑡) · (𝑓𝑡)))
8786cbvmptv 5171 . . . . 5 (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑓𝑡)))
88 eqid 2823 . . . . 5 sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < ) = sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < )
89 eqid 2823 . . . . 5 (𝑡𝑇 ↦ (((𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))‘𝑡) / sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < ))) = (𝑡𝑇 ↦ (((𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠)))‘𝑡) / sup(ran (𝑠𝑇 ↦ ((𝑓𝑠) · (𝑓𝑠))), ℝ, < )))
90 stoweidlem43.7 . . . . . 6 (𝜑𝐽 ∈ Comp)
9190adantr 483 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝐽 ∈ Comp)
9254adantr 483 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝐴 ⊆ (𝐽 Cn 𝐾))
93 eleq1 2902 . . . . . . . . 9 (𝑓 = 𝑘 → (𝑓𝐴𝑘𝐴))
94933anbi2d 1437 . . . . . . . 8 (𝑓 = 𝑘 → ((𝜑𝑓𝐴𝑙𝐴) ↔ (𝜑𝑘𝐴𝑙𝐴)))
95 fveq1 6671 . . . . . . . . . . 11 (𝑓 = 𝑘 → (𝑓𝑡) = (𝑘𝑡))
9695oveq1d 7173 . . . . . . . . . 10 (𝑓 = 𝑘 → ((𝑓𝑡) · (𝑙𝑡)) = ((𝑘𝑡) · (𝑙𝑡)))
9796mpteq2dv 5164 . . . . . . . . 9 (𝑓 = 𝑘 → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) = (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))))
9897eleq1d 2899 . . . . . . . 8 (𝑓 = 𝑘 → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴))
9994, 98imbi12d 347 . . . . . . 7 (𝑓 = 𝑘 → (((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴) ↔ ((𝜑𝑘𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴)))
100 stoweidlem43.10 . . . . . . 7 ((𝜑𝑓𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑙𝑡))) ∈ 𝐴)
10199, 100chvarvv 2005 . . . . . 6 ((𝜑𝑘𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴)
1021013adant1r 1173 . . . . 5 (((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) ∧ 𝑘𝐴𝑙𝐴) → (𝑡𝑇 ↦ ((𝑘𝑡) · (𝑙𝑡))) ∈ 𝐴)
10360adantlr 713 . . . . 5 (((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
1044adantr 483 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝑆𝑇)
10510adantr 483 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝑍𝑇)
106 simpr1 1190 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → 𝑓𝐴)
107 simpr2 1191 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → (𝑓𝑆) ≠ (𝑓𝑍))
108 simpr3 1192 . . . . 5 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → (𝑓𝑍) = 0)
10978, 79, 80, 81, 83, 52, 84, 9, 87, 88, 89, 91, 92, 102, 103, 104, 105, 106, 107, 108stoweidlem36 42328 . . . 4 ((𝜑 ∧ (𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0)) → ∃(𝑄 ∧ 0 < (𝑆)))
110109ex 415 . . 3 (𝜑 → ((𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0) → ∃(𝑄 ∧ 0 < (𝑆))))
111110exlimdv 1934 . 2 (𝜑 → (∃𝑓(𝑓𝐴 ∧ (𝑓𝑆) ≠ (𝑓𝑍) ∧ (𝑓𝑍) = 0) → ∃(𝑄 ∧ 0 < (𝑆))))
11277, 111mpd 15 1 (𝜑 → ∃(𝑄 ∧ 0 < (𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wnf 1784  wcel 2114  wnfc 2963  wne 3018  wral 3140  wrex 3141  {crab 3144  cdif 3935  wss 3938   cuni 4840   class class class wbr 5068  cmpt 5148  ran crn 5558  wf 6353  cfv 6357  (class class class)co 7158  supcsup 8906  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  (,)cioo 12741  topGenctg 16713   Cn ccn 21834  Compccmp 21996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cn 21837  df-cnp 21838  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-xms 22932  df-ms 22933  df-tms 22934
This theorem is referenced by:  stoweidlem46  42338
  Copyright terms: Public domain W3C validator