Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem45 Structured version   Visualization version   GIF version

Theorem stoweidlem45 39569
Description: This lemma proves that, given an appropriate 𝐾 (in another theorem we prove such a 𝐾 exists), there exists a function qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91 ( at the top of page 91): 0 <= qn <= 1 , qn < ε on T \ U, and qn > 1 - ε on 𝑉. We use y to represent the final qn in the paper (the one with n large enough), 𝑁 to represent 𝑛 in the paper, 𝐾 to represent 𝑘, 𝐷 to represent δ, 𝐸 to represent ε, and 𝑃 to represent 𝑝. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem45.1 𝑡𝑃
stoweidlem45.2 𝑡𝜑
stoweidlem45.3 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
stoweidlem45.4 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
stoweidlem45.5 (𝜑𝑁 ∈ ℕ)
stoweidlem45.6 (𝜑𝐾 ∈ ℕ)
stoweidlem45.7 (𝜑𝐷 ∈ ℝ+)
stoweidlem45.8 (𝜑𝐷 < 1)
stoweidlem45.9 (𝜑𝑃𝐴)
stoweidlem45.10 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem45.11 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
stoweidlem45.12 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
stoweidlem45.13 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem45.14 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem45.15 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem45.16 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem45.17 (𝜑𝐸 ∈ ℝ+)
stoweidlem45.18 (𝜑 → (1 − 𝐸) < (1 − (((𝐾 · 𝐷) / 2)↑𝑁)))
stoweidlem45.19 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
Assertion
Ref Expression
stoweidlem45 (𝜑 → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸))
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,𝑁,𝑔,𝑡   𝑃,𝑓,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑥,𝑡,𝐴   𝑦,𝑡,𝐴   𝑡,𝐾   𝑥,𝑇   𝜑,𝑥   𝑦,𝐸   𝑦,𝑄   𝑦,𝑇   𝑦,𝑈   𝑦,𝑉
Allowed substitution hints:   𝜑(𝑦,𝑡)   𝐷(𝑥,𝑦,𝑡,𝑓,𝑔)   𝑃(𝑥,𝑦,𝑡)   𝑄(𝑥,𝑡,𝑓,𝑔)   𝑈(𝑥,𝑡,𝑓,𝑔)   𝐸(𝑥,𝑡,𝑓,𝑔)   𝐾(𝑥,𝑦,𝑓,𝑔)   𝑁(𝑥,𝑦)   𝑉(𝑥,𝑡,𝑓,𝑔)

Proof of Theorem stoweidlem45
StepHypRef Expression
1 stoweidlem45.1 . . 3 𝑡𝑃
2 stoweidlem45.2 . . 3 𝑡𝜑
3 stoweidlem45.4 . . 3 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
4 eqid 2621 . . 3 (𝑡𝑇 ↦ (1 − ((𝑃𝑡)↑𝑁))) = (𝑡𝑇 ↦ (1 − ((𝑃𝑡)↑𝑁)))
5 eqid 2621 . . 3 (𝑡𝑇 ↦ 1) = (𝑡𝑇 ↦ 1)
6 eqid 2621 . . 3 (𝑡𝑇 ↦ ((𝑃𝑡)↑𝑁)) = (𝑡𝑇 ↦ ((𝑃𝑡)↑𝑁))
7 stoweidlem45.9 . . 3 (𝜑𝑃𝐴)
8 stoweidlem45.10 . . 3 (𝜑𝑃:𝑇⟶ℝ)
9 stoweidlem45.13 . . 3 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
10 stoweidlem45.14 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
11 stoweidlem45.15 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
12 stoweidlem45.16 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
13 stoweidlem45.5 . . 3 (𝜑𝑁 ∈ ℕ)
14 stoweidlem45.6 . . . 4 (𝜑𝐾 ∈ ℕ)
1513nnnn0d 11295 . . . 4 (𝜑𝑁 ∈ ℕ0)
1614, 15nnexpcld 12970 . . 3 (𝜑 → (𝐾𝑁) ∈ ℕ)
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16stoweidlem40 39564 . 2 (𝜑𝑄𝐴)
18 1red 9999 . . . . . . . 8 ((𝜑𝑡𝑇) → 1 ∈ ℝ)
198ffvelrnda 6315 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝑃𝑡) ∈ ℝ)
2015adantr 481 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝑁 ∈ ℕ0)
2119, 20reexpcld 12965 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝑃𝑡)↑𝑁) ∈ ℝ)
2218, 21resubcld 10402 . . . . . . 7 ((𝜑𝑡𝑇) → (1 − ((𝑃𝑡)↑𝑁)) ∈ ℝ)
2314nnnn0d 11295 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ0)
2423, 15nn0expcld 12971 . . . . . . . 8 (𝜑 → (𝐾𝑁) ∈ ℕ0)
2524adantr 481 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐾𝑁) ∈ ℕ0)
26 1m1e0 11033 . . . . . . . 8 (1 − 1) = 0
27 stoweidlem45.11 . . . . . . . . . . . 12 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
2827r19.21bi 2927 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
2928simpld 475 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 0 ≤ (𝑃𝑡))
3028simprd 479 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝑃𝑡) ≤ 1)
31 exple1 12860 . . . . . . . . . 10 ((((𝑃𝑡) ∈ ℝ ∧ 0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ 𝑁 ∈ ℕ0) → ((𝑃𝑡)↑𝑁) ≤ 1)
3219, 29, 30, 20, 31syl31anc 1326 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝑃𝑡)↑𝑁) ≤ 1)
3321, 18, 18, 32lesub2dd 10588 . . . . . . . 8 ((𝜑𝑡𝑇) → (1 − 1) ≤ (1 − ((𝑃𝑡)↑𝑁)))
3426, 33syl5eqbrr 4649 . . . . . . 7 ((𝜑𝑡𝑇) → 0 ≤ (1 − ((𝑃𝑡)↑𝑁)))
3522, 25, 34expge0d 12966 . . . . . 6 ((𝜑𝑡𝑇) → 0 ≤ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
363, 8, 15, 23stoweidlem12 39536 . . . . . 6 ((𝜑𝑡𝑇) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
3735, 36breqtrrd 4641 . . . . 5 ((𝜑𝑡𝑇) → 0 ≤ (𝑄𝑡))
38 0red 9985 . . . . . . . . 9 ((𝜑𝑡𝑇) → 0 ∈ ℝ)
3919, 20, 29expge0d 12966 . . . . . . . . 9 ((𝜑𝑡𝑇) → 0 ≤ ((𝑃𝑡)↑𝑁))
4038, 21, 18, 39lesub2dd 10588 . . . . . . . 8 ((𝜑𝑡𝑇) → (1 − ((𝑃𝑡)↑𝑁)) ≤ (1 − 0))
41 1m0e1 11075 . . . . . . . 8 (1 − 0) = 1
4240, 41syl6breq 4654 . . . . . . 7 ((𝜑𝑡𝑇) → (1 − ((𝑃𝑡)↑𝑁)) ≤ 1)
43 exple1 12860 . . . . . . 7 ((((1 − ((𝑃𝑡)↑𝑁)) ∈ ℝ ∧ 0 ≤ (1 − ((𝑃𝑡)↑𝑁)) ∧ (1 − ((𝑃𝑡)↑𝑁)) ≤ 1) ∧ (𝐾𝑁) ∈ ℕ0) → ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ≤ 1)
4422, 34, 42, 25, 43syl31anc 1326 . . . . . 6 ((𝜑𝑡𝑇) → ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ≤ 1)
4536, 44eqbrtrd 4635 . . . . 5 ((𝜑𝑡𝑇) → (𝑄𝑡) ≤ 1)
4637, 45jca 554 . . . 4 ((𝜑𝑡𝑇) → (0 ≤ (𝑄𝑡) ∧ (𝑄𝑡) ≤ 1))
4746ex 450 . . 3 (𝜑 → (𝑡𝑇 → (0 ≤ (𝑄𝑡) ∧ (𝑄𝑡) ≤ 1)))
482, 47ralrimi 2951 . 2 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑄𝑡) ∧ (𝑄𝑡) ≤ 1))
49 stoweidlem45.3 . . . . 5 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
50 stoweidlem45.7 . . . . 5 (𝜑𝐷 ∈ ℝ+)
51 stoweidlem45.17 . . . . 5 (𝜑𝐸 ∈ ℝ+)
52 stoweidlem45.18 . . . . 5 (𝜑 → (1 − 𝐸) < (1 − (((𝐾 · 𝐷) / 2)↑𝑁)))
5349, 3, 8, 15, 23, 50, 51, 52, 27stoweidlem24 39548 . . . 4 ((𝜑𝑡𝑉) → (1 − 𝐸) < (𝑄𝑡))
5453ex 450 . . 3 (𝜑 → (𝑡𝑉 → (1 − 𝐸) < (𝑄𝑡)))
552, 54ralrimi 2951 . 2 (𝜑 → ∀𝑡𝑉 (1 − 𝐸) < (𝑄𝑡))
56 stoweidlem45.12 . . . . 5 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
57 stoweidlem45.19 . . . . 5 (𝜑 → (1 / ((𝐾 · 𝐷)↑𝑁)) < 𝐸)
583, 13, 14, 50, 8, 27, 56, 51, 57stoweidlem25 39549 . . . 4 ((𝜑𝑡 ∈ (𝑇𝑈)) → (𝑄𝑡) < 𝐸)
5958ex 450 . . 3 (𝜑 → (𝑡 ∈ (𝑇𝑈) → (𝑄𝑡) < 𝐸))
602, 59ralrimi 2951 . 2 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)(𝑄𝑡) < 𝐸)
61 nfmpt1 4707 . . . . . . 7 𝑡(𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
623, 61nfcxfr 2759 . . . . . 6 𝑡𝑄
6362nfeq2 2776 . . . . 5 𝑡 𝑦 = 𝑄
64 fveq1 6147 . . . . . . 7 (𝑦 = 𝑄 → (𝑦𝑡) = (𝑄𝑡))
6564breq2d 4625 . . . . . 6 (𝑦 = 𝑄 → (0 ≤ (𝑦𝑡) ↔ 0 ≤ (𝑄𝑡)))
6664breq1d 4623 . . . . . 6 (𝑦 = 𝑄 → ((𝑦𝑡) ≤ 1 ↔ (𝑄𝑡) ≤ 1))
6765, 66anbi12d 746 . . . . 5 (𝑦 = 𝑄 → ((0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ↔ (0 ≤ (𝑄𝑡) ∧ (𝑄𝑡) ≤ 1)))
6863, 67ralbid 2977 . . . 4 (𝑦 = 𝑄 → (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑄𝑡) ∧ (𝑄𝑡) ≤ 1)))
6964breq2d 4625 . . . . 5 (𝑦 = 𝑄 → ((1 − 𝐸) < (𝑦𝑡) ↔ (1 − 𝐸) < (𝑄𝑡)))
7063, 69ralbid 2977 . . . 4 (𝑦 = 𝑄 → (∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ↔ ∀𝑡𝑉 (1 − 𝐸) < (𝑄𝑡)))
7164breq1d 4623 . . . . 5 (𝑦 = 𝑄 → ((𝑦𝑡) < 𝐸 ↔ (𝑄𝑡) < 𝐸))
7263, 71ralbid 2977 . . . 4 (𝑦 = 𝑄 → (∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸 ↔ ∀𝑡 ∈ (𝑇𝑈)(𝑄𝑡) < 𝐸))
7368, 70, 723anbi123d 1396 . . 3 (𝑦 = 𝑄 → ((∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸) ↔ (∀𝑡𝑇 (0 ≤ (𝑄𝑡) ∧ (𝑄𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑄𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑄𝑡) < 𝐸)))
7473rspcev 3295 . 2 ((𝑄𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝑄𝑡) ∧ (𝑄𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑄𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑄𝑡) < 𝐸)) → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸))
7517, 48, 55, 60, 74syl13anc 1325 1 (𝜑 → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wnf 1705  wcel 1987  wnfc 2748  wral 2907  wrex 2908  {crab 2911  cdif 3552   class class class wbr 4613  cmpt 4673  wf 5843  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  cmin 10210   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  +crp 11776  cexp 12800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801
This theorem is referenced by:  stoweidlem49  39573
  Copyright terms: Public domain W3C validator