Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem46 Structured version   Visualization version   GIF version

Theorem stoweidlem46 40032
Description: This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, are a cover of T \ U. Using this lemma, in a later theorem we will prove that a finite subcover exists. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem46.1 𝑡𝑈
stoweidlem46.2 𝑄
stoweidlem46.3 𝑞𝜑
stoweidlem46.4 𝑡𝜑
stoweidlem46.5 𝐾 = (topGen‘ran (,))
stoweidlem46.6 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem46.7 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
stoweidlem46.8 𝑇 = 𝐽
stoweidlem46.9 (𝜑𝐽 ∈ Comp)
stoweidlem46.10 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
stoweidlem46.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem46.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem46.13 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem46.14 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem46.15 (𝜑𝑈𝐽)
stoweidlem46.16 (𝜑𝑍𝑈)
stoweidlem46.17 (𝜑𝑇 ∈ V)
Assertion
Ref Expression
stoweidlem46 (𝜑 → (𝑇𝑈) ⊆ 𝑊)
Distinct variable groups:   𝑓,𝑔,,𝑡,𝑇   𝑓,𝑞,𝑔,𝑡,𝑇   𝑓,𝑟,𝑞,𝑡,𝑇   𝑥,𝑓,𝑞,𝑡,𝑇   𝐴,𝑓,𝑔,,𝑡   𝑄,𝑓,𝑔   𝑈,𝑓,𝑔,𝑞   𝑓,𝑍,𝑔,,𝑡   𝜑,𝑓,𝑔   𝑤,𝑔,,𝑡,𝑇   𝑔,𝑊   𝐴,𝑞,𝑟   𝑍,𝑞,𝑥   𝑈,𝑟   𝜑,𝑟   𝑡,𝐽,𝑤   𝑡,𝐾   𝑤,𝑄   𝑥,𝐴   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑤,𝑡,,𝑞)   𝐴(𝑤)   𝑄(𝑥,𝑡,,𝑟,𝑞)   𝑈(𝑤,𝑡,)   𝐽(𝑥,𝑓,𝑔,,𝑟,𝑞)   𝐾(𝑥,𝑤,𝑓,𝑔,,𝑟,𝑞)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞)   𝑍(𝑤,𝑟)

Proof of Theorem stoweidlem46
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem46.3 . . . . . . . 8 𝑞𝜑
2 nfv 1842 . . . . . . . 8 𝑞 𝑠 ∈ (𝑇𝑈)
31, 2nfan 1827 . . . . . . 7 𝑞(𝜑𝑠 ∈ (𝑇𝑈))
4 stoweidlem46.4 . . . . . . . 8 𝑡𝜑
5 nfcv 2763 . . . . . . . . . 10 𝑡𝑇
6 stoweidlem46.1 . . . . . . . . . 10 𝑡𝑈
75, 6nfdif 3729 . . . . . . . . 9 𝑡(𝑇𝑈)
87nfel2 2780 . . . . . . . 8 𝑡 𝑠 ∈ (𝑇𝑈)
94, 8nfan 1827 . . . . . . 7 𝑡(𝜑𝑠 ∈ (𝑇𝑈))
10 stoweidlem46.2 . . . . . . 7 𝑄
11 stoweidlem46.5 . . . . . . 7 𝐾 = (topGen‘ran (,))
12 stoweidlem46.6 . . . . . . 7 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
13 stoweidlem46.8 . . . . . . 7 𝑇 = 𝐽
14 stoweidlem46.9 . . . . . . . 8 (𝜑𝐽 ∈ Comp)
1514adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝐽 ∈ Comp)
16 stoweidlem46.10 . . . . . . . 8 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
1716adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝐴 ⊆ (𝐽 Cn 𝐾))
18 stoweidlem46.11 . . . . . . . 8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
19183adant1r 1318 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
20 stoweidlem46.12 . . . . . . . 8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
21203adant1r 1318 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
22 stoweidlem46.13 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
2322adantlr 751 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
24 stoweidlem46.14 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
2524adantlr 751 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
26 stoweidlem46.15 . . . . . . . 8 (𝜑𝑈𝐽)
2726adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑈𝐽)
28 stoweidlem46.16 . . . . . . . 8 (𝜑𝑍𝑈)
2928adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑍𝑈)
30 simpr 477 . . . . . . 7 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑠 ∈ (𝑇𝑈))
313, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 30stoweidlem43 40029 . . . . . 6 ((𝜑𝑠 ∈ (𝑇𝑈)) → ∃(𝑄 ∧ 0 < (𝑠)))
32 nfv 1842 . . . . . . 7 𝑔(𝑄 ∧ 0 < (𝑠))
3310nfel2 2780 . . . . . . . 8 𝑔𝑄
34 nfv 1842 . . . . . . . 8 0 < (𝑔𝑠)
3533, 34nfan 1827 . . . . . . 7 (𝑔𝑄 ∧ 0 < (𝑔𝑠))
36 eleq1 2688 . . . . . . . 8 ( = 𝑔 → (𝑄𝑔𝑄))
37 fveq1 6188 . . . . . . . . 9 ( = 𝑔 → (𝑠) = (𝑔𝑠))
3837breq2d 4663 . . . . . . . 8 ( = 𝑔 → (0 < (𝑠) ↔ 0 < (𝑔𝑠)))
3936, 38anbi12d 747 . . . . . . 7 ( = 𝑔 → ((𝑄 ∧ 0 < (𝑠)) ↔ (𝑔𝑄 ∧ 0 < (𝑔𝑠))))
4032, 35, 39cbvex 2271 . . . . . 6 (∃(𝑄 ∧ 0 < (𝑠)) ↔ ∃𝑔(𝑔𝑄 ∧ 0 < (𝑔𝑠)))
4131, 40sylib 208 . . . . 5 ((𝜑𝑠 ∈ (𝑇𝑈)) → ∃𝑔(𝑔𝑄 ∧ 0 < (𝑔𝑠)))
42 stoweidlem46.17 . . . . . . . 8 (𝜑𝑇 ∈ V)
43 rabexg 4810 . . . . . . . 8 (𝑇 ∈ V → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V)
4442, 43syl 17 . . . . . . 7 (𝜑 → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V)
4544ad2antrr 762 . . . . . 6 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V)
46 eldifi 3730 . . . . . . . 8 (𝑠 ∈ (𝑇𝑈) → 𝑠𝑇)
4746ad2antlr 763 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝑠𝑇)
48 simprr 796 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 0 < (𝑔𝑠))
49 fveq2 6189 . . . . . . . . 9 (𝑡 = 𝑠 → (𝑔𝑡) = (𝑔𝑠))
5049breq2d 4663 . . . . . . . 8 (𝑡 = 𝑠 → (0 < (𝑔𝑡) ↔ 0 < (𝑔𝑠)))
5150elrab 3361 . . . . . . 7 (𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ↔ (𝑠𝑇 ∧ 0 < (𝑔𝑠)))
5247, 48, 51sylanbrc 698 . . . . . 6 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)})
53 simpll 790 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝜑)
5416adantr 481 . . . . . . . . . . 11 ((𝜑𝑔𝑄) → 𝐴 ⊆ (𝐽 Cn 𝐾))
55 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑔𝑄) → 𝑔𝑄)
5655, 12syl6eleq 2710 . . . . . . . . . . . . 13 ((𝜑𝑔𝑄) → 𝑔 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))})
57 fveq1 6188 . . . . . . . . . . . . . . . 16 ( = 𝑔 → (𝑍) = (𝑔𝑍))
5857eqeq1d 2623 . . . . . . . . . . . . . . 15 ( = 𝑔 → ((𝑍) = 0 ↔ (𝑔𝑍) = 0))
59 fveq1 6188 . . . . . . . . . . . . . . . . . 18 ( = 𝑔 → (𝑡) = (𝑔𝑡))
6059breq2d 4663 . . . . . . . . . . . . . . . . 17 ( = 𝑔 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑔𝑡)))
6159breq1d 4661 . . . . . . . . . . . . . . . . 17 ( = 𝑔 → ((𝑡) ≤ 1 ↔ (𝑔𝑡) ≤ 1))
6260, 61anbi12d 747 . . . . . . . . . . . . . . . 16 ( = 𝑔 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
6362ralbidv 2985 . . . . . . . . . . . . . . 15 ( = 𝑔 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1)))
6458, 63anbi12d 747 . . . . . . . . . . . . . 14 ( = 𝑔 → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ ((𝑔𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))))
6564elrab 3361 . . . . . . . . . . . . 13 (𝑔 ∈ {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))} ↔ (𝑔𝐴 ∧ ((𝑔𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))))
6656, 65sylib 208 . . . . . . . . . . . 12 ((𝜑𝑔𝑄) → (𝑔𝐴 ∧ ((𝑔𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑔𝑡) ∧ (𝑔𝑡) ≤ 1))))
6766simpld 475 . . . . . . . . . . 11 ((𝜑𝑔𝑄) → 𝑔𝐴)
6854, 67sseldd 3602 . . . . . . . . . 10 ((𝜑𝑔𝑄) → 𝑔 ∈ (𝐽 Cn 𝐾))
6968ad2ant2r 783 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → 𝑔 ∈ (𝐽 Cn 𝐾))
70 nfcv 2763 . . . . . . . . . 10 𝑡0
71 nfcv 2763 . . . . . . . . . 10 𝑡𝑔
72 nfv 1842 . . . . . . . . . . 11 𝑡 𝑔 ∈ (𝐽 Cn 𝐾)
734, 72nfan 1827 . . . . . . . . . 10 𝑡(𝜑𝑔 ∈ (𝐽 Cn 𝐾))
74 eqid 2621 . . . . . . . . . 10 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}
75 0xr 10083 . . . . . . . . . . 11 0 ∈ ℝ*
7675a1i 11 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐽 Cn 𝐾)) → 0 ∈ ℝ*)
77 simpr 477 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐽 Cn 𝐾)) → 𝑔 ∈ (𝐽 Cn 𝐾))
7870, 71, 73, 11, 13, 74, 76, 77rfcnpre1 39004 . . . . . . . . 9 ((𝜑𝑔 ∈ (𝐽 Cn 𝐾)) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝐽)
7953, 69, 78syl2anc 693 . . . . . . . 8 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝐽)
80 eqidd 2622 . . . . . . . . . 10 ((𝜑𝑔𝑄) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)})
81 nfv 1842 . . . . . . . . . . 11 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}
82 nfcv 2763 . . . . . . . . . . 11 𝑔
8359breq2d 4663 . . . . . . . . . . . . 13 ( = 𝑔 → (0 < (𝑡) ↔ 0 < (𝑔𝑡)))
8483rabbidv 3187 . . . . . . . . . . . 12 ( = 𝑔 → {𝑡𝑇 ∣ 0 < (𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)})
8584eqeq2d 2631 . . . . . . . . . . 11 ( = 𝑔 → ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}))
8681, 82, 10, 85rspcegf 39008 . . . . . . . . . 10 ((𝑔𝑄 ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑔𝑡)}) → ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)})
8755, 80, 86syl2anc 693 . . . . . . . . 9 ((𝜑𝑔𝑄) → ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)})
8887ad2ant2r 783 . . . . . . . 8 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)})
89 eqeq1 2625 . . . . . . . . . 10 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)}))
9089rexbidv 3050 . . . . . . . . 9 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)}))
9190elrab 3361 . . . . . . . 8 ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ↔ ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝐽 ∧ ∃𝑄 {𝑡𝑇 ∣ 0 < (𝑔𝑡)} = {𝑡𝑇 ∣ 0 < (𝑡)}))
9279, 88, 91sylanbrc 698 . . . . . . 7 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
93 stoweidlem46.7 . . . . . . 7 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
9492, 93syl6eleqr 2711 . . . . . 6 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)
95 nfcv 2763 . . . . . . . 8 𝑤{𝑡𝑇 ∣ 0 < (𝑔𝑡)}
96 nfv 1842 . . . . . . . . 9 𝑤 𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)}
97 nfrab1 3120 . . . . . . . . . . 11 𝑤{𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
9893, 97nfcxfr 2761 . . . . . . . . . 10 𝑤𝑊
9998nfel2 2780 . . . . . . . . 9 𝑤{𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊
10096, 99nfan 1827 . . . . . . . 8 𝑤(𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)
101 eleq2 2689 . . . . . . . . 9 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (𝑠𝑤𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)}))
102 eleq1 2688 . . . . . . . . 9 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → (𝑤𝑊 ↔ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊))
103101, 102anbi12d 747 . . . . . . . 8 (𝑤 = {𝑡𝑇 ∣ 0 < (𝑔𝑡)} → ((𝑠𝑤𝑤𝑊) ↔ (𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)))
10495, 100, 103spcegf 3287 . . . . . . 7 ({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V → ((𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊) → ∃𝑤(𝑠𝑤𝑤𝑊)))
105104imp 445 . . . . . 6 (({𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ V ∧ (𝑠 ∈ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∧ {𝑡𝑇 ∣ 0 < (𝑔𝑡)} ∈ 𝑊)) → ∃𝑤(𝑠𝑤𝑤𝑊))
10645, 52, 94, 105syl12anc 1323 . . . . 5 (((𝜑𝑠 ∈ (𝑇𝑈)) ∧ (𝑔𝑄 ∧ 0 < (𝑔𝑠))) → ∃𝑤(𝑠𝑤𝑤𝑊))
10741, 106exlimddv 1862 . . . 4 ((𝜑𝑠 ∈ (𝑇𝑈)) → ∃𝑤(𝑠𝑤𝑤𝑊))
108 nfcv 2763 . . . . 5 𝑤𝑠
109108, 98elunif 39001 . . . 4 (𝑠 𝑊 ↔ ∃𝑤(𝑠𝑤𝑤𝑊))
110107, 109sylibr 224 . . 3 ((𝜑𝑠 ∈ (𝑇𝑈)) → 𝑠 𝑊)
111110ex 450 . 2 (𝜑 → (𝑠 ∈ (𝑇𝑈) → 𝑠 𝑊))
112111ssrdv 3607 1 (𝜑 → (𝑇𝑈) ⊆ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1482  wex 1703  wnf 1707  wcel 1989  wnfc 2750  wne 2793  wral 2911  wrex 2912  {crab 2915  Vcvv 3198  cdif 3569  wss 3572   cuni 4434   class class class wbr 4651  cmpt 4727  ran crn 5113  cfv 5886  (class class class)co 6647  cr 9932  0cc0 9933  1c1 9934   + caddc 9936   · cmul 9938  *cxr 10070   < clt 10071  cle 10072  (,)cioo 12172  topGenctg 16092   Cn ccn 21022  Compccmp 21183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-pre-sup 10011  ax-mulf 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-of 6894  df-om 7063  df-1st 7165  df-2nd 7166  df-supp 7293  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-2o 7558  df-oadd 7561  df-er 7739  df-map 7856  df-ixp 7906  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fsupp 8273  df-fi 8314  df-sup 8345  df-inf 8346  df-oi 8412  df-card 8762  df-cda 8987  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-q 11786  df-rp 11830  df-xneg 11943  df-xadd 11944  df-xmul 11945  df-ioo 12176  df-icc 12179  df-fz 12324  df-fzo 12462  df-seq 12797  df-exp 12856  df-hash 13113  df-cj 13833  df-re 13834  df-im 13835  df-sqrt 13969  df-abs 13970  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-mulr 15949  df-starv 15950  df-sca 15951  df-vsca 15952  df-ip 15953  df-tset 15954  df-ple 15955  df-ds 15958  df-unif 15959  df-hom 15960  df-cco 15961  df-rest 16077  df-topn 16078  df-0g 16096  df-gsum 16097  df-topgen 16098  df-pt 16099  df-prds 16102  df-xrs 16156  df-qtop 16161  df-imas 16162  df-xps 16164  df-mre 16240  df-mrc 16241  df-acs 16243  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-submnd 17330  df-mulg 17535  df-cntz 17744  df-cmn 18189  df-psmet 19732  df-xmet 19733  df-met 19734  df-bl 19735  df-mopn 19736  df-cnfld 19741  df-top 20693  df-topon 20710  df-topsp 20731  df-bases 20744  df-cn 21025  df-cnp 21026  df-cmp 21184  df-tx 21359  df-hmeo 21552  df-xms 22119  df-ms 22120  df-tms 22121
This theorem is referenced by:  stoweidlem50  40036
  Copyright terms: Public domain W3C validator