Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem48 Structured version   Visualization version   GIF version

Theorem stoweidlem48 39593
Description: This lemma is used to prove that 𝑥 built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x < ε on 𝐴. Here 𝑋 is used to represent 𝑥 in the paper, 𝐸 is used to represent ε in the paper, and 𝐷 is used to represent 𝐴 in the paper (because 𝐴 is always used to represent the subalgebra). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem48.1 𝑖𝜑
stoweidlem48.2 𝑡𝜑
stoweidlem48.3 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem48.4 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
stoweidlem48.5 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
stoweidlem48.6 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
stoweidlem48.7 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
stoweidlem48.8 (𝜑𝑀 ∈ ℕ)
stoweidlem48.9 (𝜑𝑊:(1...𝑀)⟶𝑉)
stoweidlem48.10 (𝜑𝑈:(1...𝑀)⟶𝑌)
stoweidlem48.11 (𝜑𝐷 ran 𝑊)
stoweidlem48.12 (𝜑𝐷𝑇)
stoweidlem48.13 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < 𝐸)
stoweidlem48.14 (𝜑𝑇 ∈ V)
stoweidlem48.15 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem48.16 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem48.17 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweidlem48 (𝜑 → ∀𝑡𝐷 (𝑋𝑡) < 𝐸)
Distinct variable groups:   𝑓,𝑔,,𝑡,𝐴   𝑓,𝑖,𝑇,,𝑡   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔   𝑈,𝑓,𝑔,,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑇,𝑔   𝐷,𝑖   𝑖,𝐸   𝑖,𝑀   𝑈,𝑖   𝑖,𝑊
Allowed substitution hints:   𝜑(𝑡,,𝑖)   𝐴(𝑖)   𝐷(𝑡,𝑓,𝑔,)   𝑃(𝑡,𝑓,𝑔,,𝑖)   𝐸(𝑡,𝑓,𝑔,)   𝐹(𝑡,,𝑖)   𝑀(𝑡,)   𝑉(𝑡,𝑓,𝑔,,𝑖)   𝑊(𝑡,𝑓,𝑔,)   𝑋(𝑡,𝑓,𝑔,,𝑖)   𝑌(𝑡,,𝑖)   𝑍(𝑡,𝑓,𝑔,,𝑖)

Proof of Theorem stoweidlem48
Dummy variables 𝑗 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem48.2 . 2 𝑡𝜑
2 stoweidlem48.12 . . . . . 6 (𝜑𝐷𝑇)
32sselda 3587 . . . . 5 ((𝜑𝑡𝐷) → 𝑡𝑇)
4 stoweidlem48.1 . . . . . 6 𝑖𝜑
5 stoweidlem48.3 . . . . . . 7 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
6 nfra1 2936 . . . . . . . 8 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
7 nfcv 2761 . . . . . . . 8 𝑡𝐴
86, 7nfrab 3115 . . . . . . 7 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
95, 8nfcxfr 2759 . . . . . 6 𝑡𝑌
10 stoweidlem48.4 . . . . . 6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
11 stoweidlem48.5 . . . . . 6 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
12 stoweidlem48.6 . . . . . 6 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
13 stoweidlem48.7 . . . . . 6 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
14 stoweidlem48.14 . . . . . 6 (𝜑𝑇 ∈ V)
15 stoweidlem48.8 . . . . . 6 (𝜑𝑀 ∈ ℕ)
16 stoweidlem48.10 . . . . . 6 (𝜑𝑈:(1...𝑀)⟶𝑌)
175eleq2i 2690 . . . . . . . . 9 (𝑓𝑌𝑓 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
18 fveq1 6152 . . . . . . . . . . . . 13 ( = 𝑓 → (𝑡) = (𝑓𝑡))
1918breq2d 4630 . . . . . . . . . . . 12 ( = 𝑓 → (0 ≤ (𝑡) ↔ 0 ≤ (𝑓𝑡)))
2018breq1d 4628 . . . . . . . . . . . 12 ( = 𝑓 → ((𝑡) ≤ 1 ↔ (𝑓𝑡) ≤ 1))
2119, 20anbi12d 746 . . . . . . . . . . 11 ( = 𝑓 → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
2221ralbidv 2981 . . . . . . . . . 10 ( = 𝑓 → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
2322elrab 3350 . . . . . . . . 9 (𝑓 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↔ (𝑓𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
2417, 23sylbb 209 . . . . . . . 8 (𝑓𝑌 → (𝑓𝐴 ∧ ∀𝑡𝑇 (0 ≤ (𝑓𝑡) ∧ (𝑓𝑡) ≤ 1)))
2524simpld 475 . . . . . . 7 (𝑓𝑌𝑓𝐴)
26 stoweidlem48.15 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2725, 26sylan2 491 . . . . . 6 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
28 eqid 2621 . . . . . . 7 (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
29 stoweidlem48.16 . . . . . . 7 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
301, 5, 28, 26, 29stoweidlem16 39561 . . . . . 6 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
314, 9, 10, 11, 12, 13, 14, 15, 16, 27, 30fmuldfeq 39242 . . . . 5 ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
323, 31syldan 487 . . . 4 ((𝜑𝑡𝐷) → (𝑋𝑡) = (𝑍𝑡))
33 elnnuz 11675 . . . . . . . . 9 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
3415, 33sylib 208 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘1))
3534adantr 481 . . . . . . 7 ((𝜑𝑡𝐷) → 𝑀 ∈ (ℤ‘1))
36 nfv 1840 . . . . . . . . . . . 12 𝑖 𝑡𝑇
374, 36nfan 1825 . . . . . . . . . . 11 𝑖(𝜑𝑡𝑇)
3816ffvelrnda 6320 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
39 fveq1 6152 . . . . . . . . . . . . . . . . . . . 20 ( = (𝑈𝑖) → (𝑡) = ((𝑈𝑖)‘𝑡))
4039breq2d 4630 . . . . . . . . . . . . . . . . . . 19 ( = (𝑈𝑖) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝑈𝑖)‘𝑡)))
4139breq1d 4628 . . . . . . . . . . . . . . . . . . 19 ( = (𝑈𝑖) → ((𝑡) ≤ 1 ↔ ((𝑈𝑖)‘𝑡) ≤ 1))
4240, 41anbi12d 746 . . . . . . . . . . . . . . . . . 18 ( = (𝑈𝑖) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
4342ralbidv 2981 . . . . . . . . . . . . . . . . 17 ( = (𝑈𝑖) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
4443, 5elrab2 3352 . . . . . . . . . . . . . . . 16 ((𝑈𝑖) ∈ 𝑌 ↔ ((𝑈𝑖) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
4538, 44sylib 208 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑈𝑖) ∈ 𝐴 ∧ ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1)))
4645simpld 475 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝐴)
47 simpl 473 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
4847, 46jca 554 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑈𝑖) ∈ 𝐴))
49 eleq1 2686 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑈𝑖) → (𝑓𝐴 ↔ (𝑈𝑖) ∈ 𝐴))
5049anbi2d 739 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝐴) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝐴)))
51 feq1 5988 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
5250, 51imbi12d 334 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ)))
5352, 26vtoclg 3255 . . . . . . . . . . . . . 14 ((𝑈𝑖) ∈ 𝐴 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝐴) → (𝑈𝑖):𝑇⟶ℝ))
5446, 48, 53sylc 65 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
5554adantlr 750 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
56 simplr 791 . . . . . . . . . . . 12 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
5755, 56ffvelrnd 6321 . . . . . . . . . . 11 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
58 eqid 2621 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
5937, 57, 58fmptdf 6348 . . . . . . . . . 10 ((𝜑𝑡𝑇) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ)
60 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → 𝑡𝑇)
61 ovex 6638 . . . . . . . . . . . . 13 (1...𝑀) ∈ V
62 mptexg 6444 . . . . . . . . . . . . 13 ((1...𝑀) ∈ V → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
6361, 62mp1i 13 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V)
6412fvmpt2 6253 . . . . . . . . . . . 12 ((𝑡𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6560, 63, 64syl2anc 692 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6665feq1d 5992 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝐹𝑡):(1...𝑀)⟶ℝ ↔ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)):(1...𝑀)⟶ℝ))
6759, 66mpbird 247 . . . . . . . . 9 ((𝜑𝑡𝑇) → (𝐹𝑡):(1...𝑀)⟶ℝ)
683, 67syldan 487 . . . . . . . 8 ((𝜑𝑡𝐷) → (𝐹𝑡):(1...𝑀)⟶ℝ)
6968ffvelrnda 6320 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑘) ∈ ℝ)
70 remulcl 9972 . . . . . . . 8 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑘 · 𝑗) ∈ ℝ)
7170adantl 482 . . . . . . 7 (((𝜑𝑡𝐷) ∧ (𝑘 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑘 · 𝑗) ∈ ℝ)
7235, 69, 71seqcl 12768 . . . . . 6 ((𝜑𝑡𝐷) → (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ)
7313fvmpt2 6253 . . . . . 6 ((𝑡𝑇 ∧ (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
743, 72, 73syl2anc 692 . . . . 5 ((𝜑𝑡𝐷) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
75 nfcv 2761 . . . . . . . . 9 𝑖𝑇
76 nfmpt1 4712 . . . . . . . . 9 𝑖(𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
7775, 76nfmpt 4711 . . . . . . . 8 𝑖(𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
7812, 77nfcxfr 2759 . . . . . . 7 𝑖𝐹
79 nfcv 2761 . . . . . . 7 𝑖𝑡
8078, 79nffv 6160 . . . . . 6 𝑖(𝐹𝑡)
81 nfv 1840 . . . . . . 7 𝑖 𝑡𝐷
824, 81nfan 1825 . . . . . 6 𝑖(𝜑𝑡𝐷)
83 nfcv 2761 . . . . . 6 𝑗seq1( · , (𝐹𝑡))
84 eqid 2621 . . . . . 6 seq1( · , (𝐹𝑡)) = seq1( · , (𝐹𝑡))
8515adantr 481 . . . . . 6 ((𝜑𝑡𝐷) → 𝑀 ∈ ℕ)
86 simpll 789 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 𝜑)
87 simpr 477 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (1...𝑀))
883adantr 481 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
8945simprd 479 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡𝑇 (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1))
9089r19.21bi 2927 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝑇) → (0 ≤ ((𝑈𝑖)‘𝑡) ∧ ((𝑈𝑖)‘𝑡) ≤ 1))
9190simpld 475 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝑇) → 0 ≤ ((𝑈𝑖)‘𝑡))
9286, 87, 88, 91syl21anc 1322 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ ((𝑈𝑖)‘𝑡))
9365fveq1d 6155 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖))
9486, 88, 93syl2anc 692 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖))
9586, 88, 87, 57syl21anc 1322 . . . . . . . . 9 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
9658fvmpt2 6253 . . . . . . . . 9 ((𝑖 ∈ (1...𝑀) ∧ ((𝑈𝑖)‘𝑡) ∈ ℝ) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑈𝑖)‘𝑡))
9787, 95, 96syl2anc 692 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑈𝑖)‘𝑡))
9894, 97eqtrd 2655 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡))
9992, 98breqtrrd 4646 . . . . . 6 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → 0 ≤ ((𝐹𝑡)‘𝑖))
10090simprd 479 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡𝑇) → ((𝑈𝑖)‘𝑡) ≤ 1)
10186, 87, 88, 100syl21anc 1322 . . . . . . 7 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ≤ 1)
10298, 101eqbrtrd 4640 . . . . . 6 (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ≤ 1)
103 stoweidlem48.17 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
104103adantr 481 . . . . . 6 ((𝜑𝑡𝐷) → 𝐸 ∈ ℝ+)
105 stoweidlem48.11 . . . . . . . . . . 11 (𝜑𝐷 ran 𝑊)
106105sselda 3587 . . . . . . . . . 10 ((𝜑𝑡𝐷) → 𝑡 ran 𝑊)
107 eluni 4410 . . . . . . . . . 10 (𝑡 ran 𝑊 ↔ ∃𝑤(𝑡𝑤𝑤 ∈ ran 𝑊))
108106, 107sylib 208 . . . . . . . . 9 ((𝜑𝑡𝐷) → ∃𝑤(𝑡𝑤𝑤 ∈ ran 𝑊))
109 stoweidlem48.9 . . . . . . . . . . . . . . . 16 (𝜑𝑊:(1...𝑀)⟶𝑉)
110 ffn 6007 . . . . . . . . . . . . . . . 16 (𝑊:(1...𝑀)⟶𝑉𝑊 Fn (1...𝑀))
111 fvelrnb 6205 . . . . . . . . . . . . . . . 16 (𝑊 Fn (1...𝑀) → (𝑤 ∈ ran 𝑊 ↔ ∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤))
112109, 110, 1113syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤 ∈ ran 𝑊 ↔ ∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤))
113112biimpa 501 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤)
114113adantrl 751 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑤𝑤 ∈ ran 𝑊)) → ∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤)
115 simplr 791 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑤) ∧ (𝑊𝑗) = 𝑤) → 𝑡𝑤)
116 simpr 477 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡𝑤) ∧ (𝑊𝑗) = 𝑤) → (𝑊𝑗) = 𝑤)
117115, 116eleqtrrd 2701 . . . . . . . . . . . . . . . 16 (((𝜑𝑡𝑤) ∧ (𝑊𝑗) = 𝑤) → 𝑡 ∈ (𝑊𝑗))
118117ex 450 . . . . . . . . . . . . . . 15 ((𝜑𝑡𝑤) → ((𝑊𝑗) = 𝑤𝑡 ∈ (𝑊𝑗)))
119118reximdv 3011 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑤) → (∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤 → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
120119adantrr 752 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑡𝑤𝑤 ∈ ran 𝑊)) → (∃𝑗 ∈ (1...𝑀)(𝑊𝑗) = 𝑤 → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
121114, 120mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑡𝑤𝑤 ∈ ran 𝑊)) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗))
122121ex 450 . . . . . . . . . . 11 (𝜑 → ((𝑡𝑤𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
123122exlimdv 1858 . . . . . . . . . 10 (𝜑 → (∃𝑤(𝑡𝑤𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
124123adantr 481 . . . . . . . . 9 ((𝜑𝑡𝐷) → (∃𝑤(𝑡𝑤𝑤 ∈ ran 𝑊) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗)))
125108, 124mpd 15 . . . . . . . 8 ((𝜑𝑡𝐷) → ∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗))
126 simplll 797 . . . . . . . . . . 11 ((((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑗)) → 𝜑)
127 simplr 791 . . . . . . . . . . 11 ((((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑗)) → 𝑗 ∈ (1...𝑀))
128 simpr 477 . . . . . . . . . . 11 ((((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑗)) → 𝑡 ∈ (𝑊𝑗))
129 nfv 1840 . . . . . . . . . . . . . 14 𝑖 𝑗 ∈ (1...𝑀)
130 nfv 1840 . . . . . . . . . . . . . 14 𝑖 𝑡 ∈ (𝑊𝑗)
1314, 129, 130nf3an 1828 . . . . . . . . . . . . 13 𝑖(𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗))
132 nfv 1840 . . . . . . . . . . . . 13 𝑖((𝑈𝑗)‘𝑡) < 𝐸
133131, 132nfim 1822 . . . . . . . . . . . 12 𝑖((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗)) → ((𝑈𝑗)‘𝑡) < 𝐸)
134 eleq1 2686 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑖 ∈ (1...𝑀) ↔ 𝑗 ∈ (1...𝑀)))
135 fveq2 6153 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑊𝑖) = (𝑊𝑗))
136135eleq2d 2684 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑡 ∈ (𝑊𝑖) ↔ 𝑡 ∈ (𝑊𝑗)))
137134, 1363anbi23d 1399 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑖)) ↔ (𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗))))
138 fveq2 6153 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑈𝑖) = (𝑈𝑗))
139138fveq1d 6155 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((𝑈𝑖)‘𝑡) = ((𝑈𝑗)‘𝑡))
140139breq1d 4628 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (((𝑈𝑖)‘𝑡) < 𝐸 ↔ ((𝑈𝑗)‘𝑡) < 𝐸))
141137, 140imbi12d 334 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < 𝐸) ↔ ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗)) → ((𝑈𝑗)‘𝑡) < 𝐸)))
142 stoweidlem48.13 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑡 ∈ (𝑊𝑖)((𝑈𝑖)‘𝑡) < 𝐸)
143142r19.21bi 2927 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < 𝐸)
1441433impa 1256 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑖)) → ((𝑈𝑖)‘𝑡) < 𝐸)
145133, 141, 144chvar 2261 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀) ∧ 𝑡 ∈ (𝑊𝑗)) → ((𝑈𝑗)‘𝑡) < 𝐸)
146126, 127, 128, 145syl3anc 1323 . . . . . . . . . 10 ((((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑡 ∈ (𝑊𝑗)) → ((𝑈𝑗)‘𝑡) < 𝐸)
147146ex 450 . . . . . . . . 9 (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → (𝑡 ∈ (𝑊𝑗) → ((𝑈𝑗)‘𝑡) < 𝐸))
148147reximdva 3012 . . . . . . . 8 ((𝜑𝑡𝐷) → (∃𝑗 ∈ (1...𝑀)𝑡 ∈ (𝑊𝑗) → ∃𝑗 ∈ (1...𝑀)((𝑈𝑗)‘𝑡) < 𝐸))
149125, 148mpd 15 . . . . . . 7 ((𝜑𝑡𝐷) → ∃𝑗 ∈ (1...𝑀)((𝑈𝑗)‘𝑡) < 𝐸)
15082, 129nfan 1825 . . . . . . . . . . . 12 𝑖((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀))
151 nfcv 2761 . . . . . . . . . . . . . 14 𝑖𝑗
15280, 151nffv 6160 . . . . . . . . . . . . 13 𝑖((𝐹𝑡)‘𝑗)
153152nfeq1 2774 . . . . . . . . . . . 12 𝑖((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡)
154150, 153nfim 1822 . . . . . . . . . . 11 𝑖(((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡))
155134anbi2d 739 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) ↔ ((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀))))
156 fveq2 6153 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘𝑗))
157156, 139eqeq12d 2636 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡) ↔ ((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡)))
158155, 157imbi12d 334 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((((𝜑𝑡𝐷) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑈𝑖)‘𝑡)) ↔ (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡))))
159154, 158, 98chvar 2261 . . . . . . . . . 10 (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑗) = ((𝑈𝑗)‘𝑡))
160159breq1d 4628 . . . . . . . . 9 (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → (((𝐹𝑡)‘𝑗) < 𝐸 ↔ ((𝑈𝑗)‘𝑡) < 𝐸))
161160biimprd 238 . . . . . . . 8 (((𝜑𝑡𝐷) ∧ 𝑗 ∈ (1...𝑀)) → (((𝑈𝑗)‘𝑡) < 𝐸 → ((𝐹𝑡)‘𝑗) < 𝐸))
162161reximdva 3012 . . . . . . 7 ((𝜑𝑡𝐷) → (∃𝑗 ∈ (1...𝑀)((𝑈𝑗)‘𝑡) < 𝐸 → ∃𝑗 ∈ (1...𝑀)((𝐹𝑡)‘𝑗) < 𝐸))
163149, 162mpd 15 . . . . . 6 ((𝜑𝑡𝐷) → ∃𝑗 ∈ (1...𝑀)((𝐹𝑡)‘𝑗) < 𝐸)
16480, 82, 83, 84, 85, 68, 99, 102, 104, 163fmul01lt1 39245 . . . . 5 ((𝜑𝑡𝐷) → (seq1( · , (𝐹𝑡))‘𝑀) < 𝐸)
16574, 164eqbrtrd 4640 . . . 4 ((𝜑𝑡𝐷) → (𝑍𝑡) < 𝐸)
16632, 165eqbrtrd 4640 . . 3 ((𝜑𝑡𝐷) → (𝑋𝑡) < 𝐸)
167166ex 450 . 2 (𝜑 → (𝑡𝐷 → (𝑋𝑡) < 𝐸))
1681, 167ralrimi 2952 1 (𝜑 → ∀𝑡𝐷 (𝑋𝑡) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wnf 1705  wcel 1987  wral 2907  wrex 2908  {crab 2911  Vcvv 3189  wss 3559   cuni 4407   class class class wbr 4618  cmpt 4678  ran crn 5080   Fn wfn 5847  wf 5848  cfv 5852  (class class class)co 6610  cmpt2 6612  cr 9886  0cc0 9887  1c1 9888   · cmul 9892   < clt 10025  cle 10026  cn 10971  cuz 11638  +crp 11783  ...cfz 12275  seqcseq 12748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-fz 12276  df-fzo 12414  df-seq 12749
This theorem is referenced by:  stoweidlem51  39596
  Copyright terms: Public domain W3C validator