Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem49 Structured version   Visualization version   GIF version

Theorem stoweidlem49 39570
 Description: There exists a function qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91 (at the top of page 91): 0 <= qn <= 1 , qn < ε on 𝑇 ∖ 𝑈, and qn > 1 - ε on 𝑉. Here y is used to represent the final qn in the paper (the one with n large enough), 𝑁 represents 𝑛 in the paper, 𝐾 represents 𝑘, 𝐷 represents δ, 𝐸 represents ε, and 𝑃 represents 𝑝. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem49.1 𝑡𝑃
stoweidlem49.2 𝑡𝜑
stoweidlem49.3 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
stoweidlem49.4 (𝜑𝐷 ∈ ℝ+)
stoweidlem49.5 (𝜑𝐷 < 1)
stoweidlem49.6 (𝜑𝑃𝐴)
stoweidlem49.7 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem49.8 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
stoweidlem49.9 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
stoweidlem49.10 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem49.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem49.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem49.13 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem49.14 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweidlem49 (𝜑 → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸))
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝐷,𝑓,𝑔,𝑡   𝑓,𝐸,𝑔,𝑡   𝑃,𝑓,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑥,𝐷   𝑥,𝐸   𝜑,𝑥   𝑦,𝑡,𝐴   𝑦,𝑈   𝑦,𝑉   𝑥,𝑡,𝐴   𝑥,𝑇   𝑦,𝐸   𝑦,𝑃   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑦,𝑡)   𝐷(𝑦)   𝑃(𝑥,𝑡)   𝑈(𝑥,𝑡,𝑓,𝑔)   𝑉(𝑥,𝑡,𝑓,𝑔)

Proof of Theorem stoweidlem49
Dummy variables 𝑘 𝑛 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4617 . . . . 5 (𝑗 = 𝑖 → ((1 / 𝐷) < 𝑗 ↔ (1 / 𝐷) < 𝑖))
21cbvrabv 3185 . . . 4 {𝑗 ∈ ℕ ∣ (1 / 𝐷) < 𝑗} = {𝑖 ∈ ℕ ∣ (1 / 𝐷) < 𝑖}
3 stoweidlem49.4 . . . 4 (𝜑𝐷 ∈ ℝ+)
4 stoweidlem49.5 . . . 4 (𝜑𝐷 < 1)
52, 3, 4stoweidlem14 39535 . . 3 (𝜑 → ∃𝑘 ∈ ℕ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1))
6 eqid 2621 . . . . . 6 (𝑖 ∈ ℕ0 ↦ ((1 / (𝑘 · 𝐷))↑𝑖)) = (𝑖 ∈ ℕ0 ↦ ((1 / (𝑘 · 𝐷))↑𝑖))
7 eqid 2621 . . . . . 6 (𝑖 ∈ ℕ0 ↦ (((𝑘 · 𝐷) / 2)↑𝑖)) = (𝑖 ∈ ℕ0 ↦ (((𝑘 · 𝐷) / 2)↑𝑖))
8 nnre 10971 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
98adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
103rpred 11816 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
1110adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ ℝ)
129, 11remulcld 10014 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑘 · 𝐷) ∈ ℝ)
1312adantr 481 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → (𝑘 · 𝐷) ∈ ℝ)
14 simprl 793 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → 1 < (𝑘 · 𝐷))
1512rehalfcld 11223 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝑘 · 𝐷) / 2) ∈ ℝ)
16 nngt0 10993 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 0 < 𝑘)
1716adantl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 < 𝑘)
183rpgt0d 11819 . . . . . . . . . . 11 (𝜑 → 0 < 𝐷)
1918adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 < 𝐷)
209, 11, 17, 19mulgt0d 10136 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 0 < (𝑘 · 𝐷))
21 2re 11034 . . . . . . . . . . 11 2 ∈ ℝ
22 2pos 11056 . . . . . . . . . . 11 0 < 2
2321, 22pm3.2i 471 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (2 ∈ ℝ ∧ 0 < 2))
25 divgt0 10835 . . . . . . . . 9 ((((𝑘 · 𝐷) ∈ ℝ ∧ 0 < (𝑘 · 𝐷)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < ((𝑘 · 𝐷) / 2))
2612, 20, 24, 25syl21anc 1322 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 0 < ((𝑘 · 𝐷) / 2))
2715, 26elrpd 11813 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑘 · 𝐷) / 2) ∈ ℝ+)
2827adantr 481 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → ((𝑘 · 𝐷) / 2) ∈ ℝ+)
29 simprr 795 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → ((𝑘 · 𝐷) / 2) < 1)
30 stoweidlem49.14 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
3130ad2antrr 761 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → 𝐸 ∈ ℝ+)
326, 7, 13, 14, 28, 29, 31stoweidlem7 39528 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸))
3332ex 450 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1) → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)))
3433reximdva 3011 . . 3 (𝜑 → (∃𝑘 ∈ ℕ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1) → ∃𝑘 ∈ ℕ ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)))
355, 34mpd 15 . 2 (𝜑 → ∃𝑘 ∈ ℕ ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸))
36 stoweidlem49.1 . . . . 5 𝑡𝑃
37 stoweidlem49.2 . . . . . . 7 𝑡𝜑
38 nfv 1840 . . . . . . 7 𝑡(𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)
3937, 38nfan 1825 . . . . . 6 𝑡(𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ))
40 nfv 1840 . . . . . 6 𝑡((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)
4139, 40nfan 1825 . . . . 5 𝑡((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸))
42 stoweidlem49.3 . . . . 5 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
43 eqid 2621 . . . . 5 (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑛))↑(𝑘𝑛))) = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑛))↑(𝑘𝑛)))
44 simplrr 800 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝑛 ∈ ℕ)
45 simplrl 799 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝑘 ∈ ℕ)
463ad2antrr 761 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝐷 ∈ ℝ+)
474ad2antrr 761 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝐷 < 1)
48 stoweidlem49.6 . . . . . 6 (𝜑𝑃𝐴)
4948ad2antrr 761 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝑃𝐴)
50 stoweidlem49.7 . . . . . 6 (𝜑𝑃:𝑇⟶ℝ)
5150ad2antrr 761 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝑃:𝑇⟶ℝ)
52 stoweidlem49.8 . . . . . 6 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
5352ad2antrr 761 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
54 stoweidlem49.9 . . . . . 6 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
5554ad2antrr 761 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → ∀𝑡 ∈ (𝑇𝑈)𝐷 ≤ (𝑃𝑡))
56 stoweidlem49.10 . . . . . 6 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
5756ad4ant14 1290 . . . . 5 ((((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
58 simp1ll 1122 . . . . . 6 ((((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑓𝐴𝑔𝐴) → 𝜑)
59 stoweidlem49.11 . . . . . 6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
6058, 59syld3an1 1369 . . . . 5 ((((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
61 stoweidlem49.12 . . . . . 6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
6258, 61syld3an1 1369 . . . . 5 ((((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
63 stoweidlem49.13 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
6463ad4ant14 1290 . . . . 5 ((((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
6530ad2antrr 761 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → 𝐸 ∈ ℝ+)
66 simprl 793 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → (1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)))
67 simprr 795 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)
6836, 41, 42, 43, 44, 45, 46, 47, 49, 51, 53, 55, 57, 60, 62, 64, 65, 66, 67stoweidlem45 39566 . . . 4 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) ∧ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸)) → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸))
6968ex 450 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ)) → (((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸) → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸)))
7069rexlimdvva 3031 . 2 (𝜑 → (∃𝑘 ∈ ℕ ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (((𝑘 · 𝐷) / 2)↑𝑛)) ∧ (1 / ((𝑘 · 𝐷)↑𝑛)) < 𝐸) → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸)))
7135, 70mpd 15 1 (𝜑 → ∃𝑦𝐴 (∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1) ∧ ∀𝑡𝑉 (1 − 𝐸) < (𝑦𝑡) ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑦𝑡) < 𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480  Ⅎwnf 1705   ∈ wcel 1987  Ⅎwnfc 2748  ∀wral 2907  ∃wrex 2908  {crab 2911   ∖ cdif 3552   class class class wbr 4613   ↦ cmpt 4673  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  ℝcr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018   ≤ cle 10019   − cmin 10210   / cdiv 10628  ℕcn 10964  2c2 11014  ℕ0cn0 11236  ℝ+crp 11776  ↑cexp 12800 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fl 12533  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-rlim 14154 This theorem is referenced by:  stoweidlem52  39573
 Copyright terms: Public domain W3C validator