Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem5 Structured version   Visualization version   GIF version

Theorem stoweidlem5 38702
Description: There exists a δ as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 0 < δ < 1 , p >= δ on 𝑇𝑈. Here 𝐷 is used to represent δ in the paper and 𝑄 to represent 𝑇𝑈 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem5.1 𝑡𝜑
stoweidlem5.2 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2))
stoweidlem5.3 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem5.4 (𝜑𝑄𝑇)
stoweidlem5.5 (𝜑𝐶 ∈ ℝ+)
stoweidlem5.6 (𝜑 → ∀𝑡𝑄 𝐶 ≤ (𝑃𝑡))
Assertion
Ref Expression
stoweidlem5 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡)))
Distinct variable groups:   𝑡,𝑑,𝐷   𝑃,𝑑   𝑄,𝑑
Allowed substitution hints:   𝜑(𝑡,𝑑)   𝐶(𝑡,𝑑)   𝑃(𝑡)   𝑄(𝑡)   𝑇(𝑡,𝑑)

Proof of Theorem stoweidlem5
StepHypRef Expression
1 stoweidlem5.2 . . 3 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2))
2 stoweidlem5.5 . . . 4 (𝜑𝐶 ∈ ℝ+)
3 halfre 11093 . . . . 5 (1 / 2) ∈ ℝ
4 halfgt0 11095 . . . . 5 0 < (1 / 2)
53, 4elrpii 11667 . . . 4 (1 / 2) ∈ ℝ+
6 ifcl 4079 . . . 4 ((𝐶 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ+) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+)
72, 5, 6sylancl 692 . . 3 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ+)
81, 7syl5eqel 2691 . 2 (𝜑𝐷 ∈ ℝ+)
98rpred 11704 . . 3 (𝜑𝐷 ∈ ℝ)
103a1i 11 . . 3 (𝜑 → (1 / 2) ∈ ℝ)
11 1red 9911 . . 3 (𝜑 → 1 ∈ ℝ)
122rpred 11704 . . . . 5 (𝜑𝐶 ∈ ℝ)
13 min2 11854 . . . . 5 ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2))
1412, 3, 13sylancl 692 . . . 4 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (1 / 2))
151, 14syl5eqbr 4612 . . 3 (𝜑𝐷 ≤ (1 / 2))
16 halflt1 11097 . . . 4 (1 / 2) < 1
1716a1i 11 . . 3 (𝜑 → (1 / 2) < 1)
189, 10, 11, 15, 17lelttrd 10046 . 2 (𝜑𝐷 < 1)
19 stoweidlem5.1 . . 3 𝑡𝜑
207rpred 11704 . . . . . . 7 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ)
2120adantr 479 . . . . . 6 ((𝜑𝑡𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ∈ ℝ)
2212adantr 479 . . . . . 6 ((𝜑𝑡𝑄) → 𝐶 ∈ ℝ)
23 stoweidlem5.3 . . . . . . . 8 (𝜑𝑃:𝑇⟶ℝ)
2423adantr 479 . . . . . . 7 ((𝜑𝑡𝑄) → 𝑃:𝑇⟶ℝ)
25 stoweidlem5.4 . . . . . . . 8 (𝜑𝑄𝑇)
2625sselda 3567 . . . . . . 7 ((𝜑𝑡𝑄) → 𝑡𝑇)
2724, 26ffvelrnd 6253 . . . . . 6 ((𝜑𝑡𝑄) → (𝑃𝑡) ∈ ℝ)
28 min1 11853 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶)
2912, 3, 28sylancl 692 . . . . . . 7 (𝜑 → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶)
3029adantr 479 . . . . . 6 ((𝜑𝑡𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ 𝐶)
31 stoweidlem5.6 . . . . . . 7 (𝜑 → ∀𝑡𝑄 𝐶 ≤ (𝑃𝑡))
3231r19.21bi 2915 . . . . . 6 ((𝜑𝑡𝑄) → 𝐶 ≤ (𝑃𝑡))
3321, 22, 27, 30, 32letrd 10045 . . . . 5 ((𝜑𝑡𝑄) → if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) ≤ (𝑃𝑡))
341, 33syl5eqbr 4612 . . . 4 ((𝜑𝑡𝑄) → 𝐷 ≤ (𝑃𝑡))
3534ex 448 . . 3 (𝜑 → (𝑡𝑄𝐷 ≤ (𝑃𝑡)))
3619, 35ralrimi 2939 . 2 (𝜑 → ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡))
37 eleq1 2675 . . . . 5 (𝑑 = 𝐷 → (𝑑 ∈ ℝ+𝐷 ∈ ℝ+))
38 breq1 4580 . . . . 5 (𝑑 = 𝐷 → (𝑑 < 1 ↔ 𝐷 < 1))
39 breq1 4580 . . . . . 6 (𝑑 = 𝐷 → (𝑑 ≤ (𝑃𝑡) ↔ 𝐷 ≤ (𝑃𝑡)))
4039ralbidv 2968 . . . . 5 (𝑑 = 𝐷 → (∀𝑡𝑄 𝑑 ≤ (𝑃𝑡) ↔ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡)))
4137, 38, 403anbi123d 1390 . . . 4 (𝑑 = 𝐷 → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡)) ↔ (𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡))))
4241spcegv 3266 . . 3 (𝐷 ∈ ℝ+ → ((𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡))))
438, 42syl 17 . 2 (𝜑 → ((𝐷 ∈ ℝ+𝐷 < 1 ∧ ∀𝑡𝑄 𝐷 ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡))))
448, 18, 36, 43mp3and 1418 1 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡𝑄 𝑑 ≤ (𝑃𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wex 1694  wnf 1698  wcel 1976  wral 2895  wss 3539  ifcif 4035   class class class wbr 4577  wf 5786  cfv 5790  (class class class)co 6527  cr 9791  1c1 9793   < clt 9930  cle 9931   / cdiv 10533  2c2 10917  +crp 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-2 10926  df-rp 11665
This theorem is referenced by:  stoweidlem28  38725
  Copyright terms: Public domain W3C validator