Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem53 Structured version   Visualization version   GIF version

Theorem stoweidlem53 38750
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem53.1 𝑡𝑈
stoweidlem53.2 𝑡𝜑
stoweidlem53.3 𝐾 = (topGen‘ran (,))
stoweidlem53.4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem53.5 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
stoweidlem53.6 𝑇 = 𝐽
stoweidlem53.7 𝐶 = (𝐽 Cn 𝐾)
stoweidlem53.8 (𝜑𝐽 ∈ Comp)
stoweidlem53.9 (𝜑𝐴𝐶)
stoweidlem53.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem53.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem53.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem53.13 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem53.14 (𝜑𝑈𝐽)
stoweidlem53.15 (𝜑 → (𝑇𝑈) ≠ ∅)
stoweidlem53.16 (𝜑𝑍𝑈)
Assertion
Ref Expression
stoweidlem53 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Distinct variable groups:   𝑓,𝑔,,𝑞,𝑡,𝑇   𝑓,𝑟,𝑞,𝑡,𝑇   𝑥,𝑓,𝑞,𝑡,𝑇   𝐴,𝑓,𝑔,,𝑞,𝑡   𝑄,𝑓,𝑔,𝑞   𝑈,𝑓,𝑔,,𝑞   𝑓,𝑍,𝑔,,𝑞,𝑡   𝜑,𝑓,𝑔,,𝑞   𝑤,𝑔,,𝑡,𝑇   𝑔,𝑊   ,𝐽,𝑡,𝑤   𝑞,𝑝,𝑡,𝑇   𝐴,𝑝   𝑈,𝑝   𝑍,𝑝   𝐴,𝑟   𝑈,𝑟   𝜑,𝑟   𝑡,𝐾   𝑤,𝑄   𝑤,𝑈   𝜑,𝑤   𝑥,𝐴   𝑥,𝑄   𝑥,𝑈   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡,𝑝)   𝐴(𝑤)   𝐶(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑟,𝑞,𝑝)   𝑄(𝑡,,𝑟,𝑝)   𝑈(𝑡)   𝐽(𝑥,𝑓,𝑔,𝑟,𝑞,𝑝)   𝐾(𝑥,𝑤,𝑓,𝑔,,𝑟,𝑞,𝑝)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞,𝑝)   𝑍(𝑤,𝑟)

Proof of Theorem stoweidlem53
Dummy variables 𝑖 𝑚 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem53.1 . . . 4 𝑡𝑈
2 stoweidlem53.2 . . . 4 𝑡𝜑
3 stoweidlem53.3 . . . 4 𝐾 = (topGen‘ran (,))
4 stoweidlem53.4 . . . 4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
5 stoweidlem53.5 . . . 4 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
6 stoweidlem53.6 . . . 4 𝑇 = 𝐽
7 stoweidlem53.7 . . . 4 𝐶 = (𝐽 Cn 𝐾)
8 stoweidlem53.8 . . . 4 (𝜑𝐽 ∈ Comp)
9 stoweidlem53.9 . . . 4 (𝜑𝐴𝐶)
10 stoweidlem53.10 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
11 stoweidlem53.11 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
12 stoweidlem53.12 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
13 stoweidlem53.13 . . . 4 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
14 stoweidlem53.14 . . . 4 (𝜑𝑈𝐽)
15 stoweidlem53.16 . . . 4 (𝜑𝑍𝑈)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15stoweidlem50 38747 . . 3 (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
17 nfv 1829 . . . . . 6 𝑡 𝑢 ∈ Fin
18 nfcv 2750 . . . . . . 7 𝑡𝑢
19 nfv 1829 . . . . . . . . . . . . 13 𝑡(𝑍) = 0
20 nfra1 2924 . . . . . . . . . . . . 13 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
2119, 20nfan 1815 . . . . . . . . . . . 12 𝑡((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))
22 nfcv 2750 . . . . . . . . . . . 12 𝑡𝐴
2321, 22nfrab 3099 . . . . . . . . . . 11 𝑡{𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
244, 23nfcxfr 2748 . . . . . . . . . 10 𝑡𝑄
25 nfrab1 3098 . . . . . . . . . . 11 𝑡{𝑡𝑇 ∣ 0 < (𝑡)}
2625nfeq2 2765 . . . . . . . . . 10 𝑡 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}
2724, 26nfrex 2989 . . . . . . . . 9 𝑡𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}
28 nfcv 2750 . . . . . . . . 9 𝑡𝐽
2927, 28nfrab 3099 . . . . . . . 8 𝑡{𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
305, 29nfcxfr 2748 . . . . . . 7 𝑡𝑊
3118, 30nfss 3560 . . . . . 6 𝑡 𝑢𝑊
32 nfcv 2750 . . . . . . . 8 𝑡𝑇
3332, 1nfdif 3692 . . . . . . 7 𝑡(𝑇𝑈)
34 nfcv 2750 . . . . . . 7 𝑡 𝑢
3533, 34nfss 3560 . . . . . 6 𝑡(𝑇𝑈) ⊆ 𝑢
3617, 31, 35nf3an 1818 . . . . 5 𝑡(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)
372, 36nfan 1815 . . . 4 𝑡(𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
38 nfv 1829 . . . . 5 𝑤𝜑
39 nfv 1829 . . . . . 6 𝑤 𝑢 ∈ Fin
40 nfcv 2750 . . . . . . 7 𝑤𝑢
41 nfrab1 3098 . . . . . . . 8 𝑤{𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
425, 41nfcxfr 2748 . . . . . . 7 𝑤𝑊
4340, 42nfss 3560 . . . . . 6 𝑤 𝑢𝑊
44 nfv 1829 . . . . . 6 𝑤(𝑇𝑈) ⊆ 𝑢
4539, 43, 44nf3an 1818 . . . . 5 𝑤(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)
4638, 45nfan 1815 . . . 4 𝑤(𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
47 nfv 1829 . . . . 5 𝜑
48 nfv 1829 . . . . . 6 𝑢 ∈ Fin
49 nfcv 2750 . . . . . . 7 𝑢
50 nfre1 2987 . . . . . . . . 9 𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}
51 nfcv 2750 . . . . . . . . 9 𝐽
5250, 51nfrab 3099 . . . . . . . 8 {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
535, 52nfcxfr 2748 . . . . . . 7 𝑊
5449, 53nfss 3560 . . . . . 6 𝑢𝑊
55 nfv 1829 . . . . . 6 (𝑇𝑈) ⊆ 𝑢
5648, 54, 55nf3an 1818 . . . . 5 (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)
5747, 56nfan 1815 . . . 4 (𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
58 eqid 2609 . . . 4 (𝑤𝑢 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) = (𝑤𝑢 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
59 cmptop 20950 . . . . . . . 8 (𝐽 ∈ Comp → 𝐽 ∈ Top)
608, 59syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
61 retop 22307 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
623, 61eqeltri 2683 . . . . . . 7 𝐾 ∈ Top
63 cnfex 38013 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
6460, 62, 63sylancl 692 . . . . . 6 (𝜑 → (𝐽 Cn 𝐾) ∈ V)
659, 7syl6sseq 3613 . . . . . 6 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
6664, 65ssexd 4728 . . . . 5 (𝜑𝐴 ∈ V)
6766adantr 479 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝐴 ∈ V)
68 simpr1 1059 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢 ∈ Fin)
69 simpr2 1060 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢𝑊)
70 simpr3 1061 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑇𝑈) ⊆ 𝑢)
71 stoweidlem53.15 . . . . 5 (𝜑 → (𝑇𝑈) ≠ ∅)
7271adantr 479 . . . 4 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑇𝑈) ≠ ∅)
7337, 46, 57, 4, 5, 58, 67, 68, 69, 70, 72stoweidlem35 38732 . . 3 ((𝜑 ∧ (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)) → ∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
7416, 73exlimddv 1849 . 2 (𝜑 → ∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
75 nfv 1829 . . . . . 6 𝑖𝜑
76 nfv 1829 . . . . . . 7 𝑖 𝑚 ∈ ℕ
77 nfv 1829 . . . . . . . 8 𝑖 𝑞:(1...𝑚)⟶𝑄
78 nfcv 2750 . . . . . . . . 9 𝑖(𝑇𝑈)
79 nfre1 2987 . . . . . . . . 9 𝑖𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)
8078, 79nfral 2928 . . . . . . . 8 𝑖𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)
8177, 80nfan 1815 . . . . . . 7 𝑖(𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))
8276, 81nfan 1815 . . . . . 6 𝑖(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))
8375, 82nfan 1815 . . . . 5 𝑖(𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
84 nfv 1829 . . . . . . 7 𝑡 𝑚 ∈ ℕ
85 nfcv 2750 . . . . . . . . 9 𝑡𝑞
86 nfcv 2750 . . . . . . . . 9 𝑡(1...𝑚)
8785, 86, 24nff 5940 . . . . . . . 8 𝑡 𝑞:(1...𝑚)⟶𝑄
88 nfra1 2924 . . . . . . . 8 𝑡𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)
8987, 88nfan 1815 . . . . . . 7 𝑡(𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))
9084, 89nfan 1815 . . . . . 6 𝑡(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))
912, 90nfan 1815 . . . . 5 𝑡(𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
92 eqid 2609 . . . . 5 (𝑡𝑇 ↦ ((1 / 𝑚) · Σ𝑦 ∈ (1...𝑚)((𝑞𝑦)‘𝑡))) = (𝑡𝑇 ↦ ((1 / 𝑚) · Σ𝑦 ∈ (1...𝑚)((𝑞𝑦)‘𝑡)))
93 simprl 789 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝑚 ∈ ℕ)
94 simprrl 799 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝑞:(1...𝑚)⟶𝑄)
95 simprrr 800 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))
9665adantr 479 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝐴 ⊆ (𝐽 Cn 𝐾))
97103adant1r 1310 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
98113adant1r 1310 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
9912adantlr 746 . . . . 5 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
100 elssuni 4397 . . . . . . . . 9 (𝑈𝐽𝑈 𝐽)
101100, 6syl6sseqr 3614 . . . . . . . 8 (𝑈𝐽𝑈𝑇)
10214, 101syl 17 . . . . . . 7 (𝜑𝑈𝑇)
103102, 15sseldd 3568 . . . . . 6 (𝜑𝑍𝑇)
104103adantr 479 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → 𝑍𝑇)
10583, 91, 3, 4, 92, 93, 94, 95, 6, 96, 97, 98, 99, 104stoweidlem44 38741 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
106105ex 448 . . 3 (𝜑 → ((𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
107106exlimdvv 1848 . 2 (𝜑 → (∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡))))
10874, 107mpd 15 1 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wex 1694  wnf 1698  wcel 1976  wnfc 2737  wne 2779  wral 2895  wrex 2896  {crab 2899  Vcvv 3172  cdif 3536  wss 3539  c0 3873   cuni 4366   class class class wbr 4577  cmpt 4637  ran crn 5029  wf 5786  cfv 5790  (class class class)co 6527  Fincfn 7818  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797   < clt 9930  cle 9931   / cdiv 10533  cn 10867  (,)cioo 12002  ...cfz 12152  Σcsu 14210  topGenctg 15867  Topctop 20459   Cn ccn 20780  Compccmp 20941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-sum 14211  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-mulg 17310  df-cntz 17519  df-cmn 17964  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-cn 20783  df-cnp 20784  df-cmp 20942  df-tx 21117  df-hmeo 21310  df-xms 21876  df-ms 21877  df-tms 21878
This theorem is referenced by:  stoweidlem55  38752
  Copyright terms: Public domain W3C validator