Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem60 Structured version   Visualization version   GIF version

Theorem stoweidlem60 40749
Description: This lemma proves that there exists a function g as in the proof in [BrosowskiDeutsh] p. 91 (this parte of the proof actually spans through pages 91-92): g is in the subalgebra, and for all 𝑡 in 𝑇, there is a 𝑗 such that (j-4/3)*ε < f(t) <= (j-1/3)*ε and (j-4/3)*ε < g(t) < (j+1/3)*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem60.1 𝑡𝐹
stoweidlem60.2 𝑡𝜑
stoweidlem60.3 𝐾 = (topGen‘ran (,))
stoweidlem60.4 𝑇 = 𝐽
stoweidlem60.5 𝐶 = (𝐽 Cn 𝐾)
stoweidlem60.6 𝐷 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
stoweidlem60.7 𝐵 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
stoweidlem60.8 (𝜑𝐽 ∈ Comp)
stoweidlem60.9 (𝜑𝑇 ≠ ∅)
stoweidlem60.10 (𝜑𝐴𝐶)
stoweidlem60.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem60.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem60.13 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
stoweidlem60.14 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem60.15 (𝜑𝐹𝐶)
stoweidlem60.16 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
stoweidlem60.17 (𝜑𝐸 ∈ ℝ+)
stoweidlem60.18 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem60 (𝜑 → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
Distinct variable groups:   𝑓,𝑔,𝑗,𝑛,𝑡,𝐴,𝑞,𝑟   𝑦,𝑓,𝑗,𝑛,𝑞,𝑟,𝑡,𝐴   𝐵,𝑓,𝑔   𝐷,𝑓,𝑔   𝑓,𝐸,𝑔,𝑗,𝑛,𝑡   𝑓,𝐽,𝑔,𝑟,𝑡   𝑇,𝑓,𝑔,𝑗,𝑛,𝑡   𝜑,𝑓,𝑔,𝑗,𝑛   𝑔,𝐹,𝑗,𝑛   𝐵,𝑞,𝑟,𝑦   𝐷,𝑞,𝑟,𝑦   𝑇,𝑞,𝑟,𝑦   𝜑,𝑞,𝑟,𝑦   𝐸,𝑟,𝑦   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐵(𝑡,𝑗,𝑛)   𝐶(𝑦,𝑡,𝑓,𝑔,𝑗,𝑛,𝑟,𝑞)   𝐷(𝑡,𝑗,𝑛)   𝐸(𝑞)   𝐹(𝑦,𝑡,𝑓,𝑟,𝑞)   𝐽(𝑦,𝑗,𝑛,𝑞)   𝐾(𝑦,𝑓,𝑔,𝑗,𝑛,𝑟,𝑞)

Proof of Theorem stoweidlem60
Dummy variables 𝑖 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 11190 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
21adantl 473 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
3 stoweidlem60.17 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ ℝ+)
43rpred 12036 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ)
54adantr 472 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐸 ∈ ℝ)
63rpne0d 12041 . . . . . . . . . . . . 13 (𝜑𝐸 ≠ 0)
76adantr 472 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝐸 ≠ 0)
82, 5, 7redivcld 11016 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑚 / 𝐸) ∈ ℝ)
9 1red 10218 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 1 ∈ ℝ)
108, 9readdcld 10232 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑚 / 𝐸) + 1) ∈ ℝ)
1110adantr 472 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → ((𝑚 / 𝐸) + 1) ∈ ℝ)
12 arch 11452 . . . . . . . . 9 (((𝑚 / 𝐸) + 1) ∈ ℝ → ∃𝑛 ∈ ℕ ((𝑚 / 𝐸) + 1) < 𝑛)
1311, 12syl 17 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → ∃𝑛 ∈ ℕ ((𝑚 / 𝐸) + 1) < 𝑛)
14 stoweidlem60.2 . . . . . . . . . . . . . . 15 𝑡𝜑
15 nfv 1980 . . . . . . . . . . . . . . 15 𝑡 𝑚 ∈ ℕ
1614, 15nfan 1965 . . . . . . . . . . . . . 14 𝑡(𝜑𝑚 ∈ ℕ)
17 nfra1 3067 . . . . . . . . . . . . . 14 𝑡𝑡𝑇 (𝐹𝑡) < 𝑚
1816, 17nfan 1965 . . . . . . . . . . . . 13 𝑡((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚)
19 nfv 1980 . . . . . . . . . . . . 13 𝑡 𝑛 ∈ ℕ
2018, 19nfan 1965 . . . . . . . . . . . 12 𝑡(((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ)
21 nfv 1980 . . . . . . . . . . . 12 𝑡((𝑚 / 𝐸) + 1) < 𝑛
2220, 21nfan 1965 . . . . . . . . . . 11 𝑡((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛)
23 simp-5l 829 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝜑)
24 stoweidlem60.3 . . . . . . . . . . . . . . . 16 𝐾 = (topGen‘ran (,))
25 stoweidlem60.4 . . . . . . . . . . . . . . . 16 𝑇 = 𝐽
26 stoweidlem60.5 . . . . . . . . . . . . . . . 16 𝐶 = (𝐽 Cn 𝐾)
27 stoweidlem60.15 . . . . . . . . . . . . . . . 16 (𝜑𝐹𝐶)
2824, 25, 26, 27fcnre 39652 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑇⟶ℝ)
2928ffvelrnda 6510 . . . . . . . . . . . . . 14 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
3023, 29sylancom 704 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
31 simp-5r 831 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑚 ∈ ℕ)
3231nnred 11198 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑚 ∈ ℝ)
33 simpllr 817 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑛 ∈ ℕ)
3433nnred 11198 . . . . . . . . . . . . . . 15 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑛 ∈ ℝ)
35 1red 10218 . . . . . . . . . . . . . . 15 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 1 ∈ ℝ)
3634, 35resubcld 10621 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝑛 − 1) ∈ ℝ)
3723, 4syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ)
3836, 37remulcld 10233 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → ((𝑛 − 1) · 𝐸) ∈ ℝ)
39 simpllr 817 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ∀𝑡𝑇 (𝐹𝑡) < 𝑚)
4039r19.21bi 3058 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝐹𝑡) < 𝑚)
41 simplr 809 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → ((𝑚 / 𝐸) + 1) < 𝑛)
42 simpr 479 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ((𝑚 / 𝐸) + 1) < 𝑛)
43 simpl1 1204 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝜑)
44 simpl2 1206 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑚 ∈ ℕ)
4543, 44, 8syl2anc 696 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑚 / 𝐸) ∈ ℝ)
46 1red 10218 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 1 ∈ ℝ)
47 simpl3 1208 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑛 ∈ ℕ)
4847nnred 11198 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑛 ∈ ℝ)
4945, 46, 48ltaddsubd 10790 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (((𝑚 / 𝐸) + 1) < 𝑛 ↔ (𝑚 / 𝐸) < (𝑛 − 1)))
5042, 49mpbid 222 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑚 / 𝐸) < (𝑛 − 1))
5113ad2ant2 1126 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℝ)
5251adantr 472 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑚 ∈ ℝ)
5348, 46resubcld 10621 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑛 − 1) ∈ ℝ)
5443ad2ant1 1125 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐸 ∈ ℝ)
5554adantr 472 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝐸 ∈ ℝ)
563rpgt0d 12039 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝐸)
5743, 56syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 0 < 𝐸)
58 ltdivmul2 11063 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℝ ∧ (𝑛 − 1) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → ((𝑚 / 𝐸) < (𝑛 − 1) ↔ 𝑚 < ((𝑛 − 1) · 𝐸)))
5952, 53, 55, 57, 58syl112anc 1467 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ((𝑚 / 𝐸) < (𝑛 − 1) ↔ 𝑚 < ((𝑛 − 1) · 𝐸)))
6050, 59mpbid 222 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → 𝑚 < ((𝑛 − 1) · 𝐸))
6123, 31, 33, 41, 60syl31anc 1466 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → 𝑚 < ((𝑛 − 1) · 𝐸))
6230, 32, 38, 40, 61lttrd 10361 . . . . . . . . . . . 12 ((((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) ∧ 𝑡𝑇) → (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
6362ex 449 . . . . . . . . . . 11 (((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → (𝑡𝑇 → (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
6422, 63ralrimi 3083 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) ∧ ((𝑚 / 𝐸) + 1) < 𝑛) → ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
6564ex 449 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) ∧ 𝑛 ∈ ℕ) → (((𝑚 / 𝐸) + 1) < 𝑛 → ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
6665reximdva 3143 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → (∃𝑛 ∈ ℕ ((𝑚 / 𝐸) + 1) < 𝑛 → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
6713, 66mpd 15 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ ∀𝑡𝑇 (𝐹𝑡) < 𝑚) → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
68 stoweidlem60.1 . . . . . . . 8 𝑡𝐹
69 stoweidlem60.8 . . . . . . . 8 (𝜑𝐽 ∈ Comp)
70 stoweidlem60.9 . . . . . . . 8 (𝜑𝑇 ≠ ∅)
7168, 14, 24, 69, 25, 70, 26, 27rfcnnnub 39663 . . . . . . 7 (𝜑 → ∃𝑚 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑚)
7267, 71r19.29a 3204 . . . . . 6 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
73 df-rex 3044 . . . . . 6 (∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸) ↔ ∃𝑛(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
7472, 73sylib 208 . . . . 5 (𝜑 → ∃𝑛(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
75 simpr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)))
7614, 19nfan 1965 . . . . . . . . . . 11 𝑡(𝜑𝑛 ∈ ℕ)
77 stoweidlem60.6 . . . . . . . . . . 11 𝐷 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
78 stoweidlem60.7 . . . . . . . . . . 11 𝐵 = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
79 eqid 2748 . . . . . . . . . . 11 {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} = {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)}
80 eqid 2748 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑛) ↦ {𝑦 ∈ {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < (𝑦𝑡))}) = (𝑗 ∈ (0...𝑛) ↦ {𝑦 ∈ {𝑦𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑦𝑡) ∧ (𝑦𝑡) ≤ 1)} ∣ (∀𝑡 ∈ (𝐷𝑗)(𝑦𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < (𝑦𝑡))})
8169adantr 472 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐽 ∈ Comp)
82 stoweidlem60.10 . . . . . . . . . . . 12 (𝜑𝐴𝐶)
8382adantr 472 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐴𝐶)
84 stoweidlem60.11 . . . . . . . . . . . 12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
85843adant1r 1168 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
86 stoweidlem60.12 . . . . . . . . . . . 12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
87863adant1r 1168 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
88 stoweidlem60.13 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
8988adantlr 753 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
90 stoweidlem60.14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
9190adantlr 753 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
9227adantr 472 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐹𝐶)
933adantr 472 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐸 ∈ ℝ+)
94 stoweidlem60.18 . . . . . . . . . . . 12 (𝜑𝐸 < (1 / 3))
9594adantr 472 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐸 < (1 / 3))
96 simpr 479 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9768, 76, 24, 25, 26, 77, 78, 79, 80, 81, 83, 85, 87, 89, 91, 92, 93, 95, 96stoweidlem59 40748 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ∃𝑥(𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
9897adantrr 755 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → ∃𝑥(𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
99 19.42v 2018 . . . . . . . . 9 (∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ↔ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ ∃𝑥(𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
10075, 98, 99sylanbrc 701 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
101 3anass 1081 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) ↔ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
102101exbii 1911 . . . . . . . 8 (∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) ↔ ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ (𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
103100, 102sylibr 224 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))) → ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
104103ex 449 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) → ∃𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
105104eximdv 1983 . . . . 5 (𝜑 → (∃𝑛(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) → ∃𝑛𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))))
10674, 105mpd 15 . . . 4 (𝜑 → ∃𝑛𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
107 simpl 474 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝜑)
108 simpr1l 1267 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝑛 ∈ ℕ)
109 simpr2 1212 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝑥:(0...𝑛)⟶𝐴)
110 nfv 1980 . . . . . . . . . 10 𝑡 𝑥:(0...𝑛)⟶𝐴
11114, 19, 110nf3an 1968 . . . . . . . . 9 𝑡(𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴)
112 simp2 1129 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝑛 ∈ ℕ)
113 simp3 1130 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝑥:(0...𝑛)⟶𝐴)
114 simp1 1128 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝜑)
115114, 84syl3an1 1496 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
116114, 86syl3an1 1496 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
117883ad2antl1 1177 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑦 ∈ ℝ) → (𝑡𝑇𝑦) ∈ 𝐴)
11833ad2ant1 1125 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝐸 ∈ ℝ+)
119118rpred 12036 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → 𝐸 ∈ ℝ)
12082sselda 3732 . . . . . . . . . . 11 ((𝜑𝑓𝐴) → 𝑓𝐶)
12124, 25, 26, 120fcnre 39652 . . . . . . . . . 10 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
1221213ad2antl1 1177 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
123111, 112, 113, 115, 116, 117, 119, 122stoweidlem17 40706 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ 𝑥:(0...𝑛)⟶𝐴) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) ∈ 𝐴)
124107, 108, 109, 123syl3anc 1463 . . . . . . 7 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) ∈ 𝐴)
125 nfv 1980 . . . . . . . . 9 𝑗𝜑
126 nfv 1980 . . . . . . . . . 10 𝑗(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
127 nfv 1980 . . . . . . . . . 10 𝑗 𝑥:(0...𝑛)⟶𝐴
128 nfra1 3067 . . . . . . . . . 10 𝑗𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
129126, 127, 128nf3an 1968 . . . . . . . . 9 𝑗((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
130125, 129nfan 1965 . . . . . . . 8 𝑗(𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
131 nfra1 3067 . . . . . . . . . . 11 𝑡𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)
13219, 131nfan 1965 . . . . . . . . . 10 𝑡(𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
133 nfcv 2890 . . . . . . . . . . 11 𝑡(0...𝑛)
134 nfra1 3067 . . . . . . . . . . . 12 𝑡𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1)
135 nfra1 3067 . . . . . . . . . . . 12 𝑡𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛)
136 nfra1 3067 . . . . . . . . . . . 12 𝑡𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)
137134, 135, 136nf3an 1968 . . . . . . . . . . 11 𝑡(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
138133, 137nfral 3071 . . . . . . . . . 10 𝑡𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
139132, 110, 138nf3an 1968 . . . . . . . . 9 𝑡((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
14014, 139nfan 1965 . . . . . . . 8 𝑡(𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))))
141 eqid 2748 . . . . . . . 8 (𝑡𝑇 ↦ {𝑗 ∈ (1...𝑛) ∣ 𝑡 ∈ (𝐷𝑗)}) = (𝑡𝑇 ↦ {𝑗 ∈ (1...𝑛) ∣ 𝑡 ∈ (𝐷𝑗)})
142 uniexg 7108 . . . . . . . . . . 11 (𝐽 ∈ Comp → 𝐽 ∈ V)
14369, 142syl 17 . . . . . . . . . 10 (𝜑 𝐽 ∈ V)
14425, 143syl5eqel 2831 . . . . . . . . 9 (𝜑𝑇 ∈ V)
145144adantr 472 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝑇 ∈ V)
14628adantr 472 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝐹:𝑇⟶ℝ)
147 stoweidlem60.16 . . . . . . . . . 10 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
148147r19.21bi 3058 . . . . . . . . 9 ((𝜑𝑡𝑇) → 0 ≤ (𝐹𝑡))
149148adantlr 753 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑡𝑇) → 0 ≤ (𝐹𝑡))
150 simpr1r 1269 . . . . . . . . 9 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
151150r19.21bi 3058 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑡𝑇) → (𝐹𝑡) < ((𝑛 − 1) · 𝐸))
1523adantr 472 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝐸 ∈ ℝ+)
15394adantr 472 . . . . . . . 8 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → 𝐸 < (1 / 3))
154 simpll 807 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → 𝜑)
155 simplr2 1239 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → 𝑥:(0...𝑛)⟶𝐴)
156 simpr 479 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → 𝑗 ∈ (0...𝑛))
157 simp1 1128 . . . . . . . . . 10 ((𝜑𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → 𝜑)
158 ffvelrn 6508 . . . . . . . . . . 11 ((𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → (𝑥𝑗) ∈ 𝐴)
1591583adant1 1122 . . . . . . . . . 10 ((𝜑𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → (𝑥𝑗) ∈ 𝐴)
16082sselda 3732 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑗) ∈ 𝐴) → (𝑥𝑗) ∈ 𝐶)
16124, 25, 26, 160fcnre 39652 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑗) ∈ 𝐴) → (𝑥𝑗):𝑇⟶ℝ)
162157, 159, 161syl2anc 696 . . . . . . . . 9 ((𝜑𝑥:(0...𝑛)⟶𝐴𝑗 ∈ (0...𝑛)) → (𝑥𝑗):𝑇⟶ℝ)
163154, 155, 156, 162syl3anc 1463 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛)) → (𝑥𝑗):𝑇⟶ℝ)
164 simp1r3 1332 . . . . . . . . . 10 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
165 r19.26-3 3192 . . . . . . . . . . 11 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) ↔ (∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
166165simp1bi 1137 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1))
167 simpl 474 . . . . . . . . . . 11 ((0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → 0 ≤ ((𝑥𝑗)‘𝑡))
1681672ralimi 3079 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡))
169164, 166, 1683syl 18 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡))
170 simp2 1129 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → 𝑗 ∈ (0...𝑛))
171 simp3 1130 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → 𝑡𝑇)
172 rspa 3056 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡))
173172r19.21bi 3058 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 0 ≤ ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡𝑇) → 0 ≤ ((𝑥𝑗)‘𝑡))
174169, 170, 171, 173syl21anc 1462 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → 0 ≤ ((𝑥𝑗)‘𝑡))
175 simpr 479 . . . . . . . . . . 11 ((0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ((𝑥𝑗)‘𝑡) ≤ 1)
1761752ralimi 3079 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1)
177164, 166, 1763syl 18 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1)
178 rspa 3056 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1 ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1)
179178r19.21bi 3058 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡𝑇 ((𝑥𝑗)‘𝑡) ≤ 1 ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡𝑇) → ((𝑥𝑗)‘𝑡) ≤ 1)
180177, 170, 171, 179syl21anc 1462 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡𝑇) → ((𝑥𝑗)‘𝑡) ≤ 1)
181 simp1r3 1332 . . . . . . . . . 10 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
182165simp2bi 1138 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
183181, 182syl 17 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
184 simp2 1129 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑗 ∈ (0...𝑛))
185 simp3 1130 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → 𝑡 ∈ (𝐷𝑗))
186 rspa 3056 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
187186r19.21bi 3058 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡 ∈ (𝐷𝑗)) → ((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
188183, 184, 185, 187syl21anc 1462 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐷𝑗)) → ((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛))
189 simp1r3 1332 . . . . . . . . . 10 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))
190165simp3bi 1139 . . . . . . . . . 10 (∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
191189, 190syl 17 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → ∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
192 simp2 1129 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → 𝑗 ∈ (0...𝑛))
193 simp3 1130 . . . . . . . . 9 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → 𝑡 ∈ (𝐵𝑗))
194 rspa 3056 . . . . . . . . . 10 ((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) → ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
195194r19.21bi 3058 . . . . . . . . 9 (((∀𝑗 ∈ (0...𝑛)∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡) ∧ 𝑗 ∈ (0...𝑛)) ∧ 𝑡 ∈ (𝐵𝑗)) → (1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
196191, 192, 193, 195syl21anc 1462 . . . . . . . 8 (((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) ∧ 𝑗 ∈ (0...𝑛) ∧ 𝑡 ∈ (𝐵𝑗)) → (1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))
19768, 130, 140, 77, 78, 141, 108, 145, 146, 149, 151, 152, 153, 163, 174, 180, 188, 196stoweidlem34 40723 . . . . . . 7 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡))))
198 nfmpt1 4887 . . . . . . . . . 10 𝑡(𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))
199198nfeq2 2906 . . . . . . . . 9 𝑡 𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))
200 fveq1 6339 . . . . . . . . . . . . 13 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (𝑔𝑡) = ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡))
201200breq1d 4802 . . . . . . . . . . . 12 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ↔ ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸)))
202200breq2d 4804 . . . . . . . . . . . 12 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡) ↔ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))
203201, 202anbi12d 749 . . . . . . . . . . 11 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)) ↔ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡))))
204203anbi2d 742 . . . . . . . . . 10 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) ↔ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))))
205204rexbidv 3178 . . . . . . . . 9 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) ↔ ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))))
206199, 205ralbid 3109 . . . . . . . 8 (𝑔 = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) → (∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) ↔ ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))))
207206rspcev 3437 . . . . . . 7 (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡))) ∈ 𝐴 ∧ ∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑥𝑖)‘𝑡)))‘𝑡)))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
208124, 197, 207syl2anc 696 . . . . . 6 ((𝜑 ∧ ((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡)))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
209208ex 449 . . . . 5 (𝜑 → (((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
2102092eximdv 1985 . . . 4 (𝜑 → (∃𝑛𝑥((𝑛 ∈ ℕ ∧ ∀𝑡𝑇 (𝐹𝑡) < ((𝑛 − 1) · 𝐸)) ∧ 𝑥:(0...𝑛)⟶𝐴 ∧ ∀𝑗 ∈ (0...𝑛)(∀𝑡𝑇 (0 ≤ ((𝑥𝑗)‘𝑡) ∧ ((𝑥𝑗)‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ (𝐷𝑗)((𝑥𝑗)‘𝑡) < (𝐸 / 𝑛) ∧ ∀𝑡 ∈ (𝐵𝑗)(1 − (𝐸 / 𝑛)) < ((𝑥𝑗)‘𝑡))) → ∃𝑛𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
211106, 210mpd 15 . . 3 (𝜑 → ∃𝑛𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
212 idd 24 . . . 4 (𝜑 → (∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
213212exlimdv 1998 . . 3 (𝜑 → (∃𝑛𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
214211, 213mpd 15 . 2 (𝜑 → ∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
215 idd 24 . . 3 (𝜑 → (∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
216215exlimdv 1998 . 2 (𝜑 → (∃𝑥𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))))
217214, 216mpd 15 1 (𝜑 → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1620  wex 1841  wnf 1845  wcel 2127  wnfc 2877  wne 2920  wral 3038  wrex 3039  {crab 3042  Vcvv 3328  wss 3703  c0 4046   cuni 4576   class class class wbr 4792  cmpt 4869  ran crn 5255  wf 6033  cfv 6037  (class class class)co 6801  cr 10098  0cc0 10099  1c1 10100   + caddc 10102   · cmul 10104   < clt 10237  cle 10238  cmin 10429   / cdiv 10847  cn 11183  3c3 11234  4c4 11235  +crp 11996  (,)cioo 12339  ...cfz 12490  Σcsu 14586  topGenctg 16271   Cn ccn 21201  Compccmp 21362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177  ax-mulf 10179
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-iin 4663  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-om 7219  df-1st 7321  df-2nd 7322  df-supp 7452  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7899  df-map 8013  df-pm 8014  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8429  df-fi 8470  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-n0 11456  df-z 11541  df-dec 11657  df-uz 11851  df-q 11953  df-rp 11997  df-xneg 12110  df-xadd 12111  df-xmul 12112  df-ioo 12343  df-ioc 12344  df-ico 12345  df-icc 12346  df-fz 12491  df-fzo 12631  df-fl 12758  df-seq 12967  df-exp 13026  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389  df-rlim 14390  df-sum 14587  df-struct 16032  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-starv 16129  df-sca 16130  df-vsca 16131  df-ip 16132  df-tset 16133  df-ple 16134  df-ds 16137  df-unif 16138  df-hom 16139  df-cco 16140  df-rest 16256  df-topn 16257  df-0g 16275  df-gsum 16276  df-topgen 16277  df-pt 16278  df-prds 16281  df-xrs 16335  df-qtop 16340  df-imas 16341  df-xps 16343  df-mre 16419  df-mrc 16420  df-acs 16422  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-submnd 17508  df-mulg 17713  df-cntz 17921  df-cmn 18366  df-psmet 19911  df-xmet 19912  df-met 19913  df-bl 19914  df-mopn 19915  df-cnfld 19920  df-top 20872  df-topon 20889  df-topsp 20910  df-bases 20923  df-cld 20996  df-cn 21204  df-cnp 21205  df-cmp 21363  df-tx 21538  df-hmeo 21731  df-xms 22297  df-ms 22298  df-tms 22299
This theorem is referenced by:  stoweidlem61  40750
  Copyright terms: Public domain W3C validator