Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem7 Structured version   Visualization version   GIF version

Theorem stoweidlem7 39987
Description: This lemma is used to prove that qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91, (at the top of page 91), is such that qn < ε on 𝑇𝑈, and qn > 1 - ε on 𝑉. Here it is proven that, for 𝑛 large enough, 1-(k*δ/2)^n > 1 - ε , and 1/(k*δ)^n < ε. The variable 𝐴 is used to represent (k*δ) in the paper, and 𝐵 is used to represent (k*δ/2). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem7.1 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖))
stoweidlem7.2 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵𝑖))
stoweidlem7.3 (𝜑𝐴 ∈ ℝ)
stoweidlem7.4 (𝜑 → 1 < 𝐴)
stoweidlem7.5 (𝜑𝐵 ∈ ℝ+)
stoweidlem7.6 (𝜑𝐵 < 1)
stoweidlem7.7 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweidlem7 (𝜑 → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸))
Distinct variable groups:   𝑖,𝑛,𝐴   𝐵,𝑖,𝑛   𝑖,𝐸,𝑛   𝜑,𝑖,𝑛   𝑛,𝐹   𝑛,𝐺
Allowed substitution hints:   𝐹(𝑖)   𝐺(𝑖)

Proof of Theorem stoweidlem7
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 11708 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 11393 . . . . 5 (𝜑 → 1 ∈ ℤ)
3 stoweidlem7.7 . . . . 5 (𝜑𝐸 ∈ ℝ+)
4 stoweidlem7.2 . . . . . . 7 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵𝑖))
54a1i 11 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵𝑖)))
6 oveq2 6643 . . . . . . 7 (𝑖 = 𝑘 → (𝐵𝑖) = (𝐵𝑘))
76adantl 482 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑖 = 𝑘) → (𝐵𝑖) = (𝐵𝑘))
8 nnnn0 11284 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
98adantl 482 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
10 stoweidlem7.5 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ+)
1110rpcnd 11859 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1211adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
1312, 9expcld 12991 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℂ)
145, 7, 9, 13fvmptd 6275 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐵𝑘))
15 1red 10040 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
1615renegcld 10442 . . . . . . . . 9 (𝜑 → -1 ∈ ℝ)
17 0red 10026 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
1810rpred 11857 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
19 neg1lt0 11112 . . . . . . . . . 10 -1 < 0
2019a1i 11 . . . . . . . . 9 (𝜑 → -1 < 0)
2110rpgt0d 11860 . . . . . . . . 9 (𝜑 → 0 < 𝐵)
2216, 17, 18, 20, 21lttrd 10183 . . . . . . . 8 (𝜑 → -1 < 𝐵)
23 stoweidlem7.6 . . . . . . . 8 (𝜑𝐵 < 1)
2418, 15absltd 14149 . . . . . . . 8 (𝜑 → ((abs‘𝐵) < 1 ↔ (-1 < 𝐵𝐵 < 1)))
2522, 23, 24mpbir2and 956 . . . . . . 7 (𝜑 → (abs‘𝐵) < 1)
2611, 25expcnv 14577 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝐵𝑖)) ⇝ 0)
274, 26syl5eqbr 4679 . . . . 5 (𝜑𝐺 ⇝ 0)
281, 2, 3, 14, 27climi 14222 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸))
29 r19.26 3060 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) ↔ (∀𝑘 ∈ (ℤ𝑛)(𝐵𝑘) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸))
3029simprbi 480 . . . . . . . . . . . . 13 (∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸)
3130ad2antlr 762 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸)
32 oveq2 6643 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
3332oveq1d 6650 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → ((𝐵𝑘) − 0) = ((𝐵𝑖) − 0))
3433fveq2d 6182 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (abs‘((𝐵𝑘) − 0)) = (abs‘((𝐵𝑖) − 0)))
3534breq1d 4654 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((abs‘((𝐵𝑘) − 0)) < 𝐸 ↔ (abs‘((𝐵𝑖) − 0)) < 𝐸))
3635rspccva 3303 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸𝑖 ∈ (ℤ𝑛)) → (abs‘((𝐵𝑖) − 0)) < 𝐸)
3731, 36sylancom 700 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘((𝐵𝑖) − 0)) < 𝐸)
38 simplll 797 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝜑)
3938, 10syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝐵 ∈ ℝ+)
4039rpred 11857 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝐵 ∈ ℝ)
41 simpllr 798 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
42 nnnn0 11284 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
4341, 42syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ0)
44 eluznn0 11742 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ0)
4543, 44sylancom 700 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ0)
4640, 45reexpcld 13008 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐵𝑖) ∈ ℝ)
47 rpre 11824 . . . . . . . . . . . . 13 (𝐸 ∈ ℝ+𝐸 ∈ ℝ)
4838, 3, 473syl 18 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝐸 ∈ ℝ)
49 recn 10011 . . . . . . . . . . . . . . . . 17 ((𝐵𝑖) ∈ ℝ → (𝐵𝑖) ∈ ℂ)
5049subid1d 10366 . . . . . . . . . . . . . . . 16 ((𝐵𝑖) ∈ ℝ → ((𝐵𝑖) − 0) = (𝐵𝑖))
5150adantr 481 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((𝐵𝑖) − 0) = (𝐵𝑖))
5251fveq2d 6182 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (abs‘((𝐵𝑖) − 0)) = (abs‘(𝐵𝑖)))
5352breq1d 4654 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐵𝑖) − 0)) < 𝐸 ↔ (abs‘(𝐵𝑖)) < 𝐸))
54 abslt 14035 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘(𝐵𝑖)) < 𝐸 ↔ (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸)))
5553, 54bitrd 268 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐵𝑖) − 0)) < 𝐸 ↔ (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸)))
5646, 48, 55syl2anc 692 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → ((abs‘((𝐵𝑖) − 0)) < 𝐸 ↔ (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸)))
5737, 56mpbid 222 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸))
5857simprd 479 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐵𝑖) < 𝐸)
59 eluznn 11743 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ)
6041, 59sylancom 700 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ)
6118adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → 𝐵 ∈ ℝ)
62 nnnn0 11284 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ → 𝑖 ∈ ℕ0)
6362adantl 482 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0)
6461, 63reexpcld 13008 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → (𝐵𝑖) ∈ ℝ)
653rpred 11857 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
6665adantr 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → 𝐸 ∈ ℝ)
67 1red 10040 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → 1 ∈ ℝ)
6864, 66, 67ltsub2d 10622 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → ((𝐵𝑖) < 𝐸 ↔ (1 − 𝐸) < (1 − (𝐵𝑖))))
6938, 60, 68syl2anc 692 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → ((𝐵𝑖) < 𝐸 ↔ (1 − 𝐸) < (1 − (𝐵𝑖))))
7058, 69mpbid 222 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (1 − 𝐸) < (1 − (𝐵𝑖)))
7170ralrimiva 2963 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) → ∀𝑖 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑖)))
7232oveq2d 6651 . . . . . . . . 9 (𝑘 = 𝑖 → (1 − (𝐵𝑘)) = (1 − (𝐵𝑖)))
7372breq2d 4656 . . . . . . . 8 (𝑘 = 𝑖 → ((1 − 𝐸) < (1 − (𝐵𝑘)) ↔ (1 − 𝐸) < (1 − (𝐵𝑖))))
7473cbvralv 3166 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)) ↔ ∀𝑖 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑖)))
7571, 74sylibr 224 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) → ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)))
7675ex 450 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) → ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘))))
7776reximdva 3014 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘))))
7828, 77mpd 15 . . 3 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)))
79 stoweidlem7.1 . . . . . . 7 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖))
8079a1i 11 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖)))
81 oveq2 6643 . . . . . . 7 (𝑖 = 𝑘 → ((1 / 𝐴)↑𝑖) = ((1 / 𝐴)↑𝑘))
8281adantl 482 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑖 = 𝑘) → ((1 / 𝐴)↑𝑖) = ((1 / 𝐴)↑𝑘))
83 stoweidlem7.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
8483recnd 10053 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
85 0lt1 10535 . . . . . . . . . . . 12 0 < 1
8685a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 1)
87 stoweidlem7.4 . . . . . . . . . . 11 (𝜑 → 1 < 𝐴)
8817, 15, 83, 86, 87lttrd 10183 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
8988gt0ne0d 10577 . . . . . . . . 9 (𝜑𝐴 ≠ 0)
9084, 89reccld 10779 . . . . . . . 8 (𝜑 → (1 / 𝐴) ∈ ℂ)
9190adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (1 / 𝐴) ∈ ℂ)
9291, 9expcld 12991 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝐴)↑𝑘) ∈ ℂ)
9380, 82, 9, 92fvmptd 6275 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
9483, 89rereccld 10837 . . . . . . . . 9 (𝜑 → (1 / 𝐴) ∈ ℝ)
9583, 88recgt0d 10943 . . . . . . . . 9 (𝜑 → 0 < (1 / 𝐴))
9616, 17, 94, 20, 95lttrd 10183 . . . . . . . 8 (𝜑 → -1 < (1 / 𝐴))
97 ltdiv23 10899 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 ∈ ℝ ∧ 0 < 1)) → ((1 / 𝐴) < 1 ↔ (1 / 1) < 𝐴))
9815, 83, 88, 15, 86, 97syl122anc 1333 . . . . . . . . . 10 (𝜑 → ((1 / 𝐴) < 1 ↔ (1 / 1) < 𝐴))
99 1cnd 10041 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
10099div1d 10778 . . . . . . . . . . 11 (𝜑 → (1 / 1) = 1)
101100breq1d 4654 . . . . . . . . . 10 (𝜑 → ((1 / 1) < 𝐴 ↔ 1 < 𝐴))
10298, 101bitrd 268 . . . . . . . . 9 (𝜑 → ((1 / 𝐴) < 1 ↔ 1 < 𝐴))
10387, 102mpbird 247 . . . . . . . 8 (𝜑 → (1 / 𝐴) < 1)
10494, 15absltd 14149 . . . . . . . 8 (𝜑 → ((abs‘(1 / 𝐴)) < 1 ↔ (-1 < (1 / 𝐴) ∧ (1 / 𝐴) < 1)))
10596, 103, 104mpbir2and 956 . . . . . . 7 (𝜑 → (abs‘(1 / 𝐴)) < 1)
10690, 105expcnv 14577 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖)) ⇝ 0)
10779, 106syl5eqbr 4679 . . . . 5 (𝜑𝐹 ⇝ 0)
1081, 2, 3, 93, 107climi2 14223 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸)
109 simpll 789 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝜑)
110 uznnssnn 11720 . . . . . . . . 9 (𝑛 ∈ ℕ → (ℤ𝑛) ⊆ ℕ)
111110ad2antlr 762 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℤ𝑛) ⊆ ℕ)
112 simpr 477 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ (ℤ𝑛))
113111, 112sseldd 3596 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
11492subid1d 10366 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((1 / 𝐴)↑𝑘) − 0) = ((1 / 𝐴)↑𝑘))
115114fveq2d 6182 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (abs‘(((1 / 𝐴)↑𝑘) − 0)) = (abs‘((1 / 𝐴)↑𝑘)))
11694adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (1 / 𝐴) ∈ ℝ)
117116, 9reexpcld 13008 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝐴)↑𝑘) ∈ ℝ)
11817, 94, 95ltled 10170 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (1 / 𝐴))
119118adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (1 / 𝐴))
120116, 9, 119expge0d 13009 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((1 / 𝐴)↑𝑘))
121117, 120absidd 14142 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (abs‘((1 / 𝐴)↑𝑘)) = ((1 / 𝐴)↑𝑘))
122115, 121eqtrd 2654 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘(((1 / 𝐴)↑𝑘) − 0)) = ((1 / 𝐴)↑𝑘))
123122breq1d 4654 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 ↔ ((1 / 𝐴)↑𝑘) < 𝐸))
124123biimpd 219 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ((1 / 𝐴)↑𝑘) < 𝐸))
125109, 113, 124syl2anc 692 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ((1 / 𝐴)↑𝑘) < 𝐸))
126125ralimdva 2959 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸))
127126reximdva 3014 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸))
128108, 127mpd 15 . . 3 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸)
1291rexanuz2 14070 . . 3 (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ↔ (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸))
13078, 128, 129sylanbrc 697 . 2 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸))
131 simpr 477 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸))
132 nnz 11384 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
133 uzid 11687 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
134132, 133syl 17 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ𝑛))
135134ad2antlr 762 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → 𝑛 ∈ (ℤ𝑛))
136 oveq2 6643 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐵𝑘) = (𝐵𝑛))
137136oveq2d 6651 . . . . . . . . 9 (𝑘 = 𝑛 → (1 − (𝐵𝑘)) = (1 − (𝐵𝑛)))
138137breq2d 4656 . . . . . . . 8 (𝑘 = 𝑛 → ((1 − 𝐸) < (1 − (𝐵𝑘)) ↔ (1 − 𝐸) < (1 − (𝐵𝑛))))
139 oveq2 6643 . . . . . . . . 9 (𝑘 = 𝑛 → ((1 / 𝐴)↑𝑘) = ((1 / 𝐴)↑𝑛))
140139breq1d 4654 . . . . . . . 8 (𝑘 = 𝑛 → (((1 / 𝐴)↑𝑘) < 𝐸 ↔ ((1 / 𝐴)↑𝑛) < 𝐸))
141138, 140anbi12d 746 . . . . . . 7 (𝑘 = 𝑛 → (((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ↔ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸)))
142141rspccva 3303 . . . . . 6 ((∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ∧ 𝑛 ∈ (ℤ𝑛)) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸))
143131, 135, 142syl2anc 692 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸))
144 1cnd 10041 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℂ)
14584, 89jca 554 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
146145adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
14742adantl 482 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
148 expdiv 12894 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → ((1 / 𝐴)↑𝑛) = ((1↑𝑛) / (𝐴𝑛)))
149144, 146, 147, 148syl3anc 1324 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1 / 𝐴)↑𝑛) = ((1↑𝑛) / (𝐴𝑛)))
150132adantl 482 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
151 1exp 12872 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
152150, 151syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1↑𝑛) = 1)
153152oveq1d 6650 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1↑𝑛) / (𝐴𝑛)) = (1 / (𝐴𝑛)))
154149, 153eqtrd 2654 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((1 / 𝐴)↑𝑛) = (1 / (𝐴𝑛)))
155154breq1d 4654 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((1 / 𝐴)↑𝑛) < 𝐸 ↔ (1 / (𝐴𝑛)) < 𝐸))
156155adantr 481 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → (((1 / 𝐴)↑𝑛) < 𝐸 ↔ (1 / (𝐴𝑛)) < 𝐸))
157156anbi2d 739 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → (((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸) ↔ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸)))
158143, 157mpbid 222 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸))
159158ex 450 . . 3 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸)))
160159reximdva 3014 . 2 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸)))
161130, 160mpd 15 1 (𝜑 → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wne 2791  wral 2909  wrex 2910  wss 3567   class class class wbr 4644  cmpt 4720  cfv 5876  (class class class)co 6635  cc 9919  cr 9920  0cc0 9921  1c1 9922   < clt 10059  cle 10060  cmin 10251  -cneg 10252   / cdiv 10669  cn 11005  0cn0 11277  cz 11362  cuz 11672  +crp 11817  cexp 12843  abscabs 13955  cli 14196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-sup 8333  df-inf 8334  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-rp 11818  df-fl 12576  df-seq 12785  df-exp 12844  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-rlim 14201
This theorem is referenced by:  stoweidlem49  40029
  Copyright terms: Public domain W3C validator