Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem7 Structured version   Visualization version   GIF version

Theorem stoweidlem7 38699
Description: This lemma is used to prove that qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91, (at the top of page 91), is such that qn < ε on 𝑇𝑈, and qn > 1 - ε on 𝑉. Here it is proven that, for 𝑛 large enough, 1-(k*δ/2)^n > 1 - ε , and 1/(k*δ)^n < ε. The variable 𝐴 is used to represent (k*δ) in the paper, and 𝐵 is used to represent (k*δ/2). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem7.1 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖))
stoweidlem7.2 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵𝑖))
stoweidlem7.3 (𝜑𝐴 ∈ ℝ)
stoweidlem7.4 (𝜑 → 1 < 𝐴)
stoweidlem7.5 (𝜑𝐵 ∈ ℝ+)
stoweidlem7.6 (𝜑𝐵 < 1)
stoweidlem7.7 (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
stoweidlem7 (𝜑 → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸))
Distinct variable groups:   𝑖,𝑛,𝐴   𝐵,𝑖,𝑛   𝑖,𝐸,𝑛   𝜑,𝑖,𝑛   𝑛,𝐹   𝑛,𝐺
Allowed substitution hints:   𝐹(𝑖)   𝐺(𝑖)

Proof of Theorem stoweidlem7
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 11550 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 11236 . . . . 5 (𝜑 → 1 ∈ ℤ)
3 stoweidlem7.7 . . . . 5 (𝜑𝐸 ∈ ℝ+)
4 stoweidlem7.2 . . . . . . 7 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵𝑖))
54a1i 11 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵𝑖)))
6 oveq2 6530 . . . . . . 7 (𝑖 = 𝑘 → (𝐵𝑖) = (𝐵𝑘))
76adantl 480 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑖 = 𝑘) → (𝐵𝑖) = (𝐵𝑘))
8 nnnn0 11141 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
98adantl 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
10 stoweidlem7.5 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ+)
1110rpcnd 11701 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1211adantr 479 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
1312, 9expcld 12820 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℂ)
145, 7, 9, 13fvmptd 6177 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐵𝑘))
15 1red 9906 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
1615renegcld 10303 . . . . . . . . 9 (𝜑 → -1 ∈ ℝ)
17 0red 9892 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
1810rpred 11699 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
19 neg1lt0 10969 . . . . . . . . . 10 -1 < 0
2019a1i 11 . . . . . . . . 9 (𝜑 → -1 < 0)
2110rpgt0d 11702 . . . . . . . . 9 (𝜑 → 0 < 𝐵)
2216, 17, 18, 20, 21lttrd 10044 . . . . . . . 8 (𝜑 → -1 < 𝐵)
23 stoweidlem7.6 . . . . . . . 8 (𝜑𝐵 < 1)
2418, 15absltd 13957 . . . . . . . 8 (𝜑 → ((abs‘𝐵) < 1 ↔ (-1 < 𝐵𝐵 < 1)))
2522, 23, 24mpbir2and 958 . . . . . . 7 (𝜑 → (abs‘𝐵) < 1)
2611, 25expcnv 14376 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝐵𝑖)) ⇝ 0)
274, 26syl5eqbr 4607 . . . . 5 (𝜑𝐺 ⇝ 0)
281, 2, 3, 14, 27climi 14030 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸))
29 r19.26 3040 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) ↔ (∀𝑘 ∈ (ℤ𝑛)(𝐵𝑘) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸))
3029simprbi 478 . . . . . . . . . . . . 13 (∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸)
3130ad2antlr 758 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸)
32 oveq2 6530 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
3332oveq1d 6537 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → ((𝐵𝑘) − 0) = ((𝐵𝑖) − 0))
3433fveq2d 6087 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (abs‘((𝐵𝑘) − 0)) = (abs‘((𝐵𝑖) − 0)))
3534breq1d 4582 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((abs‘((𝐵𝑘) − 0)) < 𝐸 ↔ (abs‘((𝐵𝑖) − 0)) < 𝐸))
3635rspccva 3275 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐵𝑘) − 0)) < 𝐸𝑖 ∈ (ℤ𝑛)) → (abs‘((𝐵𝑖) − 0)) < 𝐸)
3731, 36sylancom 697 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘((𝐵𝑖) − 0)) < 𝐸)
38 simplll 793 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝜑)
3938, 10syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝐵 ∈ ℝ+)
4039rpred 11699 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝐵 ∈ ℝ)
41 simpllr 794 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
42 nnnn0 11141 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
4341, 42syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ0)
44 eluznn0 11584 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ0)
4543, 44sylancom 697 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ0)
4640, 45reexpcld 12837 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐵𝑖) ∈ ℝ)
47 rpre 11666 . . . . . . . . . . . . 13 (𝐸 ∈ ℝ+𝐸 ∈ ℝ)
4838, 3, 473syl 18 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝐸 ∈ ℝ)
49 recn 9877 . . . . . . . . . . . . . . . . 17 ((𝐵𝑖) ∈ ℝ → (𝐵𝑖) ∈ ℂ)
5049subid1d 10227 . . . . . . . . . . . . . . . 16 ((𝐵𝑖) ∈ ℝ → ((𝐵𝑖) − 0) = (𝐵𝑖))
5150adantr 479 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((𝐵𝑖) − 0) = (𝐵𝑖))
5251fveq2d 6087 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (abs‘((𝐵𝑖) − 0)) = (abs‘(𝐵𝑖)))
5352breq1d 4582 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐵𝑖) − 0)) < 𝐸 ↔ (abs‘(𝐵𝑖)) < 𝐸))
54 abslt 13843 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘(𝐵𝑖)) < 𝐸 ↔ (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸)))
5553, 54bitrd 266 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐵𝑖) − 0)) < 𝐸 ↔ (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸)))
5646, 48, 55syl2anc 690 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → ((abs‘((𝐵𝑖) − 0)) < 𝐸 ↔ (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸)))
5737, 56mpbid 220 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (-𝐸 < (𝐵𝑖) ∧ (𝐵𝑖) < 𝐸))
5857simprd 477 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐵𝑖) < 𝐸)
59 eluznn 11585 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ)
6041, 59sylancom 697 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → 𝑖 ∈ ℕ)
6118adantr 479 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → 𝐵 ∈ ℝ)
62 nnnn0 11141 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ → 𝑖 ∈ ℕ0)
6362adantl 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0)
6461, 63reexpcld 12837 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → (𝐵𝑖) ∈ ℝ)
653rpred 11699 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
6665adantr 479 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → 𝐸 ∈ ℝ)
67 1red 9906 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ) → 1 ∈ ℝ)
6864, 66, 67ltsub2d 10481 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ) → ((𝐵𝑖) < 𝐸 ↔ (1 − 𝐸) < (1 − (𝐵𝑖))))
6938, 60, 68syl2anc 690 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → ((𝐵𝑖) < 𝐸 ↔ (1 − 𝐸) < (1 − (𝐵𝑖))))
7058, 69mpbid 220 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ𝑛)) → (1 − 𝐸) < (1 − (𝐵𝑖)))
7170ralrimiva 2943 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) → ∀𝑖 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑖)))
7232oveq2d 6538 . . . . . . . . 9 (𝑘 = 𝑖 → (1 − (𝐵𝑘)) = (1 − (𝐵𝑖)))
7372breq2d 4584 . . . . . . . 8 (𝑘 = 𝑖 → ((1 − 𝐸) < (1 − (𝐵𝑘)) ↔ (1 − 𝐸) < (1 − (𝐵𝑖))))
7473cbvralv 3141 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)) ↔ ∀𝑖 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑖)))
7571, 74sylibr 222 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸)) → ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)))
7675ex 448 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) → ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘))))
7776reximdva 2994 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐵𝑘) ∈ ℂ ∧ (abs‘((𝐵𝑘) − 0)) < 𝐸) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘))))
7828, 77mpd 15 . . 3 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)))
79 stoweidlem7.1 . . . . . . 7 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖))
8079a1i 11 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖)))
81 oveq2 6530 . . . . . . 7 (𝑖 = 𝑘 → ((1 / 𝐴)↑𝑖) = ((1 / 𝐴)↑𝑘))
8281adantl 480 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ 𝑖 = 𝑘) → ((1 / 𝐴)↑𝑖) = ((1 / 𝐴)↑𝑘))
83 stoweidlem7.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
8483recnd 9919 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
85 0lt1 10394 . . . . . . . . . . . 12 0 < 1
8685a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 1)
87 stoweidlem7.4 . . . . . . . . . . 11 (𝜑 → 1 < 𝐴)
8817, 15, 83, 86, 87lttrd 10044 . . . . . . . . . 10 (𝜑 → 0 < 𝐴)
8988gt0ne0d 10436 . . . . . . . . 9 (𝜑𝐴 ≠ 0)
9084, 89reccld 10638 . . . . . . . 8 (𝜑 → (1 / 𝐴) ∈ ℂ)
9190adantr 479 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (1 / 𝐴) ∈ ℂ)
9291, 9expcld 12820 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝐴)↑𝑘) ∈ ℂ)
9380, 82, 9, 92fvmptd 6177 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
9483, 89rereccld 10696 . . . . . . . . 9 (𝜑 → (1 / 𝐴) ∈ ℝ)
9583, 88recgt0d 10802 . . . . . . . . 9 (𝜑 → 0 < (1 / 𝐴))
9616, 17, 94, 20, 95lttrd 10044 . . . . . . . 8 (𝜑 → -1 < (1 / 𝐴))
97 ltdiv23 10758 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 ∈ ℝ ∧ 0 < 1)) → ((1 / 𝐴) < 1 ↔ (1 / 1) < 𝐴))
9815, 83, 88, 15, 86, 97syl122anc 1326 . . . . . . . . . 10 (𝜑 → ((1 / 𝐴) < 1 ↔ (1 / 1) < 𝐴))
99 1cnd 9907 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
10099div1d 10637 . . . . . . . . . . 11 (𝜑 → (1 / 1) = 1)
101100breq1d 4582 . . . . . . . . . 10 (𝜑 → ((1 / 1) < 𝐴 ↔ 1 < 𝐴))
10298, 101bitrd 266 . . . . . . . . 9 (𝜑 → ((1 / 𝐴) < 1 ↔ 1 < 𝐴))
10387, 102mpbird 245 . . . . . . . 8 (𝜑 → (1 / 𝐴) < 1)
10494, 15absltd 13957 . . . . . . . 8 (𝜑 → ((abs‘(1 / 𝐴)) < 1 ↔ (-1 < (1 / 𝐴) ∧ (1 / 𝐴) < 1)))
10596, 103, 104mpbir2and 958 . . . . . . 7 (𝜑 → (abs‘(1 / 𝐴)) < 1)
10690, 105expcnv 14376 . . . . . 6 (𝜑 → (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖)) ⇝ 0)
10779, 106syl5eqbr 4607 . . . . 5 (𝜑𝐹 ⇝ 0)
1081, 2, 3, 93, 107climi2 14031 . . . 4 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸)
109 simpll 785 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝜑)
110 uznnssnn 11562 . . . . . . . . 9 (𝑛 ∈ ℕ → (ℤ𝑛) ⊆ ℕ)
111110ad2antlr 758 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℤ𝑛) ⊆ ℕ)
112 simpr 475 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ (ℤ𝑛))
113111, 112sseldd 3563 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
11492subid1d 10227 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((1 / 𝐴)↑𝑘) − 0) = ((1 / 𝐴)↑𝑘))
115114fveq2d 6087 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (abs‘(((1 / 𝐴)↑𝑘) − 0)) = (abs‘((1 / 𝐴)↑𝑘)))
11694adantr 479 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (1 / 𝐴) ∈ ℝ)
117116, 9reexpcld 12837 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝐴)↑𝑘) ∈ ℝ)
11817, 94, 95ltled 10031 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (1 / 𝐴))
119118adantr 479 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (1 / 𝐴))
120116, 9, 119expge0d 12838 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((1 / 𝐴)↑𝑘))
121117, 120absidd 13950 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (abs‘((1 / 𝐴)↑𝑘)) = ((1 / 𝐴)↑𝑘))
122115, 121eqtrd 2638 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘(((1 / 𝐴)↑𝑘) − 0)) = ((1 / 𝐴)↑𝑘))
123122breq1d 4582 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 ↔ ((1 / 𝐴)↑𝑘) < 𝐸))
124123biimpd 217 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ((1 / 𝐴)↑𝑘) < 𝐸))
125109, 113, 124syl2anc 690 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ((1 / 𝐴)↑𝑘) < 𝐸))
126125ralimdva 2939 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸))
127126reximdva 2994 . . . 4 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸))
128108, 127mpd 15 . . 3 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸)
1291rexanuz2 13878 . . 3 (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ↔ (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 / 𝐴)↑𝑘) < 𝐸))
13078, 128, 129sylanbrc 694 . 2 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸))
131 simpr 475 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸))
132 nnz 11227 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
133 uzid 11529 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
134132, 133syl 17 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ𝑛))
135134ad2antlr 758 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → 𝑛 ∈ (ℤ𝑛))
136 oveq2 6530 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐵𝑘) = (𝐵𝑛))
137136oveq2d 6538 . . . . . . . . 9 (𝑘 = 𝑛 → (1 − (𝐵𝑘)) = (1 − (𝐵𝑛)))
138137breq2d 4584 . . . . . . . 8 (𝑘 = 𝑛 → ((1 − 𝐸) < (1 − (𝐵𝑘)) ↔ (1 − 𝐸) < (1 − (𝐵𝑛))))
139 oveq2 6530 . . . . . . . . 9 (𝑘 = 𝑛 → ((1 / 𝐴)↑𝑘) = ((1 / 𝐴)↑𝑛))
140139breq1d 4582 . . . . . . . 8 (𝑘 = 𝑛 → (((1 / 𝐴)↑𝑘) < 𝐸 ↔ ((1 / 𝐴)↑𝑛) < 𝐸))
141138, 140anbi12d 742 . . . . . . 7 (𝑘 = 𝑛 → (((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ↔ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸)))
142141rspccva 3275 . . . . . 6 ((∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ∧ 𝑛 ∈ (ℤ𝑛)) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸))
143131, 135, 142syl2anc 690 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸))
144 1cnd 9907 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℂ)
14584, 89jca 552 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
146145adantr 479 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
14742adantl 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
148 expdiv 12723 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → ((1 / 𝐴)↑𝑛) = ((1↑𝑛) / (𝐴𝑛)))
149144, 146, 147, 148syl3anc 1317 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1 / 𝐴)↑𝑛) = ((1↑𝑛) / (𝐴𝑛)))
150132adantl 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
151 1exp 12701 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
152150, 151syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1↑𝑛) = 1)
153152oveq1d 6537 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1↑𝑛) / (𝐴𝑛)) = (1 / (𝐴𝑛)))
154149, 153eqtrd 2638 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((1 / 𝐴)↑𝑛) = (1 / (𝐴𝑛)))
155154breq1d 4582 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((1 / 𝐴)↑𝑛) < 𝐸 ↔ (1 / (𝐴𝑛)) < 𝐸))
156155adantr 479 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → (((1 / 𝐴)↑𝑛) < 𝐸 ↔ (1 / (𝐴𝑛)) < 𝐸))
157156anbi2d 735 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → (((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸) ↔ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸)))
158143, 157mpbid 220 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸))
159158ex 448 . . 3 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) → ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸)))
160159reximdva 2994 . 2 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1 − 𝐸) < (1 − (𝐵𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸)))
161130, 160mpd 15 1 (𝜑 → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵𝑛)) ∧ (1 / (𝐴𝑛)) < 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  wne 2774  wral 2890  wrex 2891  wss 3534   class class class wbr 4572  cmpt 4632  cfv 5785  (class class class)co 6522  cc 9785  cr 9786  0cc0 9787  1c1 9788   < clt 9925  cle 9926  cmin 10112  -cneg 10113   / cdiv 10528  cn 10862  0cn0 11134  cz 11205  cuz 11514  +crp 11659  cexp 12672  abscabs 13763  cli 14004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864  ax-pre-sup 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-iun 4446  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-om 6930  df-2nd 7032  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-er 7601  df-pm 7719  df-en 7814  df-dom 7815  df-sdom 7816  df-sup 8203  df-inf 8204  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-div 10529  df-nn 10863  df-2 10921  df-3 10922  df-n0 11135  df-z 11206  df-uz 11515  df-rp 11660  df-fl 12405  df-seq 12614  df-exp 12673  df-cj 13628  df-re 13629  df-im 13630  df-sqrt 13764  df-abs 13765  df-clim 14008  df-rlim 14009
This theorem is referenced by:  stoweidlem49  38741
  Copyright terms: Public domain W3C validator