MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvnd Structured version   Visualization version   GIF version

Theorem strfvnd 15870
Description: Deduction version of strfvn 15873. (Contributed by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
strfvnd.c 𝐸 = Slot 𝑁
strfvnd.f (𝜑𝑆𝑉)
Assertion
Ref Expression
strfvnd (𝜑 → (𝐸𝑆) = (𝑆𝑁))

Proof of Theorem strfvnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 strfvnd.f . 2 (𝜑𝑆𝑉)
2 elex 3210 . 2 (𝑆𝑉𝑆 ∈ V)
3 fveq1 6188 . . 3 (𝑥 = 𝑆 → (𝑥𝑁) = (𝑆𝑁))
4 strfvnd.c . . . 4 𝐸 = Slot 𝑁
5 df-slot 15855 . . . 4 Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥𝑁))
64, 5eqtri 2643 . . 3 𝐸 = (𝑥 ∈ V ↦ (𝑥𝑁))
7 fvex 6199 . . 3 (𝑆𝑁) ∈ V
83, 6, 7fvmpt 6280 . 2 (𝑆 ∈ V → (𝐸𝑆) = (𝑆𝑁))
91, 2, 83syl 18 1 (𝜑 → (𝐸𝑆) = (𝑆𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1482  wcel 1989  Vcvv 3198  cmpt 4727  cfv 5886  Slot cslot 15850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pr 4904
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-iota 5849  df-fun 5888  df-fv 5894  df-slot 15855
This theorem is referenced by:  strfvn  15873  strfvss  15874  strndxid  15879  setsidvald  15883  strfvd  15898  strfv2d  15899  setsid  15908  setsnid  15909
  Copyright terms: Public domain W3C validator