HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  strlem1 Structured version   Visualization version   GIF version

Theorem strlem1 30030
Description: Lemma for strong state theorem: if closed subspace 𝐴 is not contained in 𝐵, there is a unit vector 𝑢 in their difference. (Contributed by NM, 25-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
strlem1.1 𝐴C
strlem1.2 𝐵C
Assertion
Ref Expression
strlem1 𝐴𝐵 → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵

Proof of Theorem strlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 4312 . . 3 (¬ (𝐴𝐵) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴𝐵))
2 ssdif0 4326 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
31, 2xchnxbir 335 . 2 𝐴𝐵 ↔ ∃𝑥 𝑥 ∈ (𝐴𝐵))
4 eldifi 4106 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐴)
5 strlem1.1 . . . . . . . . . . . 12 𝐴C
65cheli 29012 . . . . . . . . . . 11 (𝑥𝐴𝑥 ∈ ℋ)
7 normcl 28905 . . . . . . . . . . 11 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
84, 6, 73syl 18 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → (norm𝑥) ∈ ℝ)
9 strlem1.2 . . . . . . . . . . . . . . . 16 𝐵C
10 ch0 29008 . . . . . . . . . . . . . . . 16 (𝐵C → 0𝐵)
119, 10ax-mp 5 . . . . . . . . . . . . . . 15 0𝐵
12 eldifn 4107 . . . . . . . . . . . . . . 15 (0 ∈ (𝐴𝐵) → ¬ 0𝐵)
1311, 12mt2 202 . . . . . . . . . . . . . 14 ¬ 0 ∈ (𝐴𝐵)
14 eleq1 2903 . . . . . . . . . . . . . 14 (𝑥 = 0 → (𝑥 ∈ (𝐴𝐵) ↔ 0 ∈ (𝐴𝐵)))
1513, 14mtbiri 329 . . . . . . . . . . . . 13 (𝑥 = 0 → ¬ 𝑥 ∈ (𝐴𝐵))
1615con2i 141 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥 = 0)
17 norm-i 28909 . . . . . . . . . . . . 13 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
184, 6, 173syl 18 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → ((norm𝑥) = 0 ↔ 𝑥 = 0))
1916, 18mtbird 327 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → ¬ (norm𝑥) = 0)
2019neqned 3026 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → (norm𝑥) ≠ 0)
218, 20rereccld 11470 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (1 / (norm𝑥)) ∈ ℝ)
2221recnd 10672 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → (1 / (norm𝑥)) ∈ ℂ)
235chshii 29007 . . . . . . . . . 10 𝐴S
24 shmulcl 28998 . . . . . . . . . 10 ((𝐴S ∧ (1 / (norm𝑥)) ∈ ℂ ∧ 𝑥𝐴) → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴)
2523, 24mp3an1 1444 . . . . . . . . 9 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥𝐴) → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴)
2625ex 415 . . . . . . . 8 ((1 / (norm𝑥)) ∈ ℂ → (𝑥𝐴 → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴))
2722, 26syl 17 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → (𝑥𝐴 → ((1 / (norm𝑥)) · 𝑥) ∈ 𝐴))
288recnd 10672 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → (norm𝑥) ∈ ℂ)
299chshii 29007 . . . . . . . . . . . 12 𝐵S
30 shmulcl 28998 . . . . . . . . . . . 12 ((𝐵S ∧ (norm𝑥) ∈ ℂ ∧ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵) → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵)
3129, 30mp3an1 1444 . . . . . . . . . . 11 (((norm𝑥) ∈ ℂ ∧ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵) → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵)
3231ex 415 . . . . . . . . . 10 ((norm𝑥) ∈ ℂ → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐵 → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵))
3328, 32syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐵 → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵))
3428, 20recidd 11414 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → ((norm𝑥) · (1 / (norm𝑥))) = 1)
3534oveq1d 7174 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → (((norm𝑥) · (1 / (norm𝑥))) · 𝑥) = (1 · 𝑥))
364, 6syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ ℋ)
37 ax-hvmulass 28787 . . . . . . . . . . . 12 (((norm𝑥) ∈ ℂ ∧ (1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (((norm𝑥) · (1 / (norm𝑥))) · 𝑥) = ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)))
3828, 22, 36, 37syl3anc 1367 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → (((norm𝑥) · (1 / (norm𝑥))) · 𝑥) = ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)))
39 ax-hvmulid 28786 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
404, 6, 393syl 18 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) → (1 · 𝑥) = 𝑥)
4135, 38, 403eqtr3d 2867 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) → ((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) = 𝑥)
4241eleq1d 2900 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (((norm𝑥) · ((1 / (norm𝑥)) · 𝑥)) ∈ 𝐵𝑥𝐵))
4333, 42sylibd 241 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐵𝑥𝐵))
4443con3d 155 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → (¬ 𝑥𝐵 → ¬ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵))
4527, 44anim12d 610 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (((1 / (norm𝑥)) · 𝑥) ∈ 𝐴 ∧ ¬ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵)))
46 eldif 3949 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
47 eldif 3949 . . . . . 6 (((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵) ↔ (((1 / (norm𝑥)) · 𝑥) ∈ 𝐴 ∧ ¬ ((1 / (norm𝑥)) · 𝑥) ∈ 𝐵))
4845, 46, 473imtr4g 298 . . . . 5 (𝑥 ∈ (𝐴𝐵) → (𝑥 ∈ (𝐴𝐵) → ((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵)))
4948pm2.43i 52 . . . 4 (𝑥 ∈ (𝐴𝐵) → ((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵))
50 norm-iii 28920 . . . . . 6 (((1 / (norm𝑥)) ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘((1 / (norm𝑥)) · 𝑥)) = ((abs‘(1 / (norm𝑥))) · (norm𝑥)))
5122, 36, 50syl2anc 586 . . . . 5 (𝑥 ∈ (𝐴𝐵) → (norm‘((1 / (norm𝑥)) · 𝑥)) = ((abs‘(1 / (norm𝑥))) · (norm𝑥)))
5215necon2ai 3048 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → 𝑥 ≠ 0)
53 normgt0 28907 . . . . . . . . . 10 (𝑥 ∈ ℋ → (𝑥 ≠ 0 ↔ 0 < (norm𝑥)))
544, 6, 533syl 18 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) → (𝑥 ≠ 0 ↔ 0 < (norm𝑥)))
5552, 54mpbid 234 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) → 0 < (norm𝑥))
56 1re 10644 . . . . . . . . 9 1 ∈ ℝ
57 0le1 11166 . . . . . . . . 9 0 ≤ 1
58 divge0 11512 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((norm𝑥) ∈ ℝ ∧ 0 < (norm𝑥))) → 0 ≤ (1 / (norm𝑥)))
5956, 57, 58mpanl12 700 . . . . . . . 8 (((norm𝑥) ∈ ℝ ∧ 0 < (norm𝑥)) → 0 ≤ (1 / (norm𝑥)))
608, 55, 59syl2anc 586 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → 0 ≤ (1 / (norm𝑥)))
6121, 60absidd 14785 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → (abs‘(1 / (norm𝑥))) = (1 / (norm𝑥)))
6261oveq1d 7174 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((abs‘(1 / (norm𝑥))) · (norm𝑥)) = ((1 / (norm𝑥)) · (norm𝑥)))
6328, 20recid2d 11415 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((1 / (norm𝑥)) · (norm𝑥)) = 1)
6451, 62, 633eqtrd 2863 . . . 4 (𝑥 ∈ (𝐴𝐵) → (norm‘((1 / (norm𝑥)) · 𝑥)) = 1)
65 fveqeq2 6682 . . . . 5 (𝑢 = ((1 / (norm𝑥)) · 𝑥) → ((norm𝑢) = 1 ↔ (norm‘((1 / (norm𝑥)) · 𝑥)) = 1))
6665rspcev 3626 . . . 4 ((((1 / (norm𝑥)) · 𝑥) ∈ (𝐴𝐵) ∧ (norm‘((1 / (norm𝑥)) · 𝑥)) = 1) → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
6749, 64, 66syl2anc 586 . . 3 (𝑥 ∈ (𝐴𝐵) → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
6867exlimiv 1930 . 2 (∃𝑥 𝑥 ∈ (𝐴𝐵) → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
693, 68sylbi 219 1 𝐴𝐵 → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1536  wex 1779  wcel 2113  wne 3019  wrex 3142  cdif 3936  wss 3939  c0 4294   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541   · cmul 10545   < clt 10678  cle 10679   / cdiv 11300  abscabs 14596  chba 28699   · csm 28701  normcno 28703  0c0v 28704   S csh 28708   C cch 28709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-hilex 28779  ax-hfvadd 28780  ax-hv0cl 28783  ax-hfvmul 28785  ax-hvmulid 28786  ax-hvmulass 28787  ax-hvmul0 28790  ax-hfi 28859  ax-his1 28862  ax-his3 28864  ax-his4 28865
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-hnorm 28748  df-sh 28987  df-ch 29001
This theorem is referenced by:  stri  30037  hstri  30045
  Copyright terms: Public domain W3C validator