HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  strlem3a Structured version   Visualization version   GIF version

Theorem strlem3a 29239
Description: Lemma for strong state theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
strlem3a.1 𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))
Assertion
Ref Expression
strlem3a ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑆 ∈ States)
Distinct variable group:   𝑥,𝑢
Allowed substitution hints:   𝑆(𝑥,𝑢)

Proof of Theorem strlem3a
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . 7 (𝑥C𝑥C )
2 simpl 472 . . . . . . 7 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑢 ∈ ℋ)
3 pjhcl 28388 . . . . . . 7 ((𝑥C𝑢 ∈ ℋ) → ((proj𝑥)‘𝑢) ∈ ℋ)
41, 2, 3syl2anr 494 . . . . . 6 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → ((proj𝑥)‘𝑢) ∈ ℋ)
5 normcl 28110 . . . . . 6 (((proj𝑥)‘𝑢) ∈ ℋ → (norm‘((proj𝑥)‘𝑢)) ∈ ℝ)
64, 5syl 17 . . . . 5 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → (norm‘((proj𝑥)‘𝑢)) ∈ ℝ)
76resqcld 13075 . . . 4 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → ((norm‘((proj𝑥)‘𝑢))↑2) ∈ ℝ)
86sqge0d 13076 . . . 4 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → 0 ≤ ((norm‘((proj𝑥)‘𝑢))↑2))
9 normge0 28111 . . . . . 6 (((proj𝑥)‘𝑢) ∈ ℋ → 0 ≤ (norm‘((proj𝑥)‘𝑢)))
104, 9syl 17 . . . . 5 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → 0 ≤ (norm‘((proj𝑥)‘𝑢)))
11 pjnorm 28711 . . . . . . 7 ((𝑥C𝑢 ∈ ℋ) → (norm‘((proj𝑥)‘𝑢)) ≤ (norm𝑢))
121, 2, 11syl2anr 494 . . . . . 6 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → (norm‘((proj𝑥)‘𝑢)) ≤ (norm𝑢))
13 simplr 807 . . . . . 6 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → (norm𝑢) = 1)
1412, 13breqtrd 4711 . . . . 5 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → (norm‘((proj𝑥)‘𝑢)) ≤ 1)
15 2nn0 11347 . . . . . 6 2 ∈ ℕ0
16 exple1 12960 . . . . . 6 ((((norm‘((proj𝑥)‘𝑢)) ∈ ℝ ∧ 0 ≤ (norm‘((proj𝑥)‘𝑢)) ∧ (norm‘((proj𝑥)‘𝑢)) ≤ 1) ∧ 2 ∈ ℕ0) → ((norm‘((proj𝑥)‘𝑢))↑2) ≤ 1)
1715, 16mpan2 707 . . . . 5 (((norm‘((proj𝑥)‘𝑢)) ∈ ℝ ∧ 0 ≤ (norm‘((proj𝑥)‘𝑢)) ∧ (norm‘((proj𝑥)‘𝑢)) ≤ 1) → ((norm‘((proj𝑥)‘𝑢))↑2) ≤ 1)
186, 10, 14, 17syl3anc 1366 . . . 4 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → ((norm‘((proj𝑥)‘𝑢))↑2) ≤ 1)
19 0re 10078 . . . . 5 0 ∈ ℝ
20 1re 10077 . . . . 5 1 ∈ ℝ
2119, 20elicc2i 12277 . . . 4 (((norm‘((proj𝑥)‘𝑢))↑2) ∈ (0[,]1) ↔ (((norm‘((proj𝑥)‘𝑢))↑2) ∈ ℝ ∧ 0 ≤ ((norm‘((proj𝑥)‘𝑢))↑2) ∧ ((norm‘((proj𝑥)‘𝑢))↑2) ≤ 1))
227, 8, 18, 21syl3anbrc 1265 . . 3 (((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) ∧ 𝑥C ) → ((norm‘((proj𝑥)‘𝑢))↑2) ∈ (0[,]1))
23 strlem3a.1 . . 3 𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))
2422, 23fmptd 6425 . 2 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑆: C ⟶(0[,]1))
25 helch 28228 . . . 4 ℋ ∈ C
2623strlem2 29238 . . . 4 ( ℋ ∈ C → (𝑆‘ ℋ) = ((norm‘((proj‘ ℋ)‘𝑢))↑2))
2725, 26ax-mp 5 . . 3 (𝑆‘ ℋ) = ((norm‘((proj‘ ℋ)‘𝑢))↑2)
28 pjch1 28657 . . . . . 6 (𝑢 ∈ ℋ → ((proj‘ ℋ)‘𝑢) = 𝑢)
2928fveq2d 6233 . . . . 5 (𝑢 ∈ ℋ → (norm‘((proj‘ ℋ)‘𝑢)) = (norm𝑢))
3029oveq1d 6705 . . . 4 (𝑢 ∈ ℋ → ((norm‘((proj‘ ℋ)‘𝑢))↑2) = ((norm𝑢)↑2))
31 oveq1 6697 . . . . 5 ((norm𝑢) = 1 → ((norm𝑢)↑2) = (1↑2))
32 sq1 12998 . . . . 5 (1↑2) = 1
3331, 32syl6eq 2701 . . . 4 ((norm𝑢) = 1 → ((norm𝑢)↑2) = 1)
3430, 33sylan9eq 2705 . . 3 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → ((norm‘((proj‘ ℋ)‘𝑢))↑2) = 1)
3527, 34syl5eq 2697 . 2 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → (𝑆‘ ℋ) = 1)
36 pjcjt2 28679 . . . . . . . . . . . 12 ((𝑧C𝑤C𝑢 ∈ ℋ) → (𝑧 ⊆ (⊥‘𝑤) → ((proj‘(𝑧 𝑤))‘𝑢) = (((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢))))
3736imp 444 . . . . . . . . . . 11 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((proj‘(𝑧 𝑤))‘𝑢) = (((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢)))
3837fveq2d 6233 . . . . . . . . . 10 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (norm‘((proj‘(𝑧 𝑤))‘𝑢)) = (norm‘(((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢))))
3938oveq1d 6705 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((norm‘((proj‘(𝑧 𝑤))‘𝑢))↑2) = ((norm‘(((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢)))↑2))
40 pjopyth 28707 . . . . . . . . . 10 ((𝑧C𝑤C𝑢 ∈ ℋ) → (𝑧 ⊆ (⊥‘𝑤) → ((norm‘(((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢)))↑2) = (((norm‘((proj𝑧)‘𝑢))↑2) + ((norm‘((proj𝑤)‘𝑢))↑2))))
4140imp 444 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((norm‘(((proj𝑧)‘𝑢) + ((proj𝑤)‘𝑢)))↑2) = (((norm‘((proj𝑧)‘𝑢))↑2) + ((norm‘((proj𝑤)‘𝑢))↑2)))
4239, 41eqtrd 2685 . . . . . . . 8 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((norm‘((proj‘(𝑧 𝑤))‘𝑢))↑2) = (((norm‘((proj𝑧)‘𝑢))↑2) + ((norm‘((proj𝑤)‘𝑢))↑2)))
43 chjcl 28344 . . . . . . . . . . 11 ((𝑧C𝑤C ) → (𝑧 𝑤) ∈ C )
44433adant3 1101 . . . . . . . . . 10 ((𝑧C𝑤C𝑢 ∈ ℋ) → (𝑧 𝑤) ∈ C )
4544adantr 480 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (𝑧 𝑤) ∈ C )
4623strlem2 29238 . . . . . . . . 9 ((𝑧 𝑤) ∈ C → (𝑆‘(𝑧 𝑤)) = ((norm‘((proj‘(𝑧 𝑤))‘𝑢))↑2))
4745, 46syl 17 . . . . . . . 8 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (𝑆‘(𝑧 𝑤)) = ((norm‘((proj‘(𝑧 𝑤))‘𝑢))↑2))
48 3simpa 1078 . . . . . . . . . 10 ((𝑧C𝑤C𝑢 ∈ ℋ) → (𝑧C𝑤C ))
4948adantr 480 . . . . . . . . 9 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (𝑧C𝑤C ))
5023strlem2 29238 . . . . . . . . . 10 (𝑧C → (𝑆𝑧) = ((norm‘((proj𝑧)‘𝑢))↑2))
5123strlem2 29238 . . . . . . . . . 10 (𝑤C → (𝑆𝑤) = ((norm‘((proj𝑤)‘𝑢))↑2))
5250, 51oveqan12d 6709 . . . . . . . . 9 ((𝑧C𝑤C ) → ((𝑆𝑧) + (𝑆𝑤)) = (((norm‘((proj𝑧)‘𝑢))↑2) + ((norm‘((proj𝑤)‘𝑢))↑2)))
5349, 52syl 17 . . . . . . . 8 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → ((𝑆𝑧) + (𝑆𝑤)) = (((norm‘((proj𝑧)‘𝑢))↑2) + ((norm‘((proj𝑤)‘𝑢))↑2)))
5442, 47, 533eqtr4d 2695 . . . . . . 7 (((𝑧C𝑤C𝑢 ∈ ℋ) ∧ 𝑧 ⊆ (⊥‘𝑤)) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤)))
55543exp1 1305 . . . . . 6 (𝑧C → (𝑤C → (𝑢 ∈ ℋ → (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤))))))
5655com3r 87 . . . . 5 (𝑢 ∈ ℋ → (𝑧C → (𝑤C → (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤))))))
5756adantr 480 . . . 4 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → (𝑧C → (𝑤C → (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤))))))
5857ralrimdv 2997 . . 3 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → (𝑧C → ∀𝑤C (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤)))))
5958ralrimiv 2994 . 2 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → ∀𝑧C𝑤C (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤))))
60 isst 29200 . 2 (𝑆 ∈ States ↔ (𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑧C𝑤C (𝑧 ⊆ (⊥‘𝑤) → (𝑆‘(𝑧 𝑤)) = ((𝑆𝑧) + (𝑆𝑤)))))
6124, 35, 59, 60syl3anbrc 1265 1 ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑆 ∈ States)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wss 3607   class class class wbr 4685  cmpt 4762  wf 5922  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  cle 10113  2c2 11108  0cn0 11330  [,]cicc 12216  cexp 12900  chil 27904   + cva 27905  normcno 27908   C cch 27914  cort 27915   chj 27918  projcpjh 27922  Statescst 27947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070  ax-hcompl 28187
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-cn 21079  df-cnp 21080  df-lm 21081  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cfil 23099  df-cau 23100  df-cmet 23101  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-dip 27684  df-ssp 27705  df-ph 27796  df-cbn 27847  df-hnorm 27953  df-hba 27954  df-hvsub 27956  df-hlim 27957  df-hcau 27958  df-sh 28192  df-ch 28206  df-oc 28237  df-ch0 28238  df-shs 28295  df-chj 28297  df-pjh 28382  df-st 29198
This theorem is referenced by:  strlem3  29240
  Copyright terms: Public domain W3C validator