![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strlemor0OLD | Structured version Visualization version GIF version |
Description: Structure definition utility lemma. To prove that an explicit function is a function using O(n) steps, exploit the order properties of the index set. Zero-pair case. Obsolete as of 26-Nov-2021. Theorems strlemor0OLD 16015, strlemor1OLD 16016, strlemor2OLD 16017, strlemor3OLD 16018 were replaced by strleun 16019, strle1 16020, strle2 16021, strle3 16022 following the introduction df-struct 15906. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strlemor0OLD | ⊢ (Fun ◡◡∅ ∧ dom ∅ ⊆ (1...0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fun0 5992 | . . 3 ⊢ Fun ∅ | |
2 | funcnvcnv 5994 | . . 3 ⊢ (Fun ∅ → Fun ◡◡∅) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun ◡◡∅ |
4 | dm0 5371 | . . 3 ⊢ dom ∅ = ∅ | |
5 | 0ss 4005 | . . 3 ⊢ ∅ ⊆ (1...0) | |
6 | 4, 5 | eqsstri 3668 | . 2 ⊢ dom ∅ ⊆ (1...0) |
7 | 3, 6 | pm3.2i 470 | 1 ⊢ (Fun ◡◡∅ ∧ dom ∅ ⊆ (1...0)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ⊆ wss 3607 ∅c0 3948 ◡ccnv 5142 dom cdm 5143 Fun wfun 5920 (class class class)co 6690 0cc0 9974 1c1 9975 ...cfz 12364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-fun 5928 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |