MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strlemor1OLD Structured version   Visualization version   GIF version

Theorem strlemor1OLD 15909
Description: Add one element to the end of a structure. Obsolete as of 26-Nov-2021. See comment of strlemor0OLD 15908. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
strlemor.f (Fun 𝐹 ∧ dom 𝐹 ⊆ (1...𝐼))
strlemor.i 𝐼 ∈ ℕ0
strlemor.o 𝐼 < 𝐽
strlemor.j 𝐽 ∈ ℕ
strlemor.a 𝐴 = 𝐽
strlemor1.g 𝐺 = (𝐹 ∪ {⟨𝐴, 𝑋⟩})
Assertion
Ref Expression
strlemor1OLD (Fun 𝐺 ∧ dom 𝐺 ⊆ (1...𝐽))

Proof of Theorem strlemor1OLD
StepHypRef Expression
1 strlemor.f . . . . . 6 (Fun 𝐹 ∧ dom 𝐹 ⊆ (1...𝐼))
21simpli 474 . . . . 5 Fun 𝐹
3 funcnvsn 5904 . . . . 5 Fun {⟨𝑋, 𝐽⟩}
42, 3pm3.2i 471 . . . 4 (Fun 𝐹 ∧ Fun {⟨𝑋, 𝐽⟩})
5 cnvcnvss 5558 . . . . . . 7 𝐹𝐹
6 dmss 5293 . . . . . . 7 (𝐹𝐹 → dom 𝐹 ⊆ dom 𝐹)
75, 6ax-mp 5 . . . . . 6 dom 𝐹 ⊆ dom 𝐹
8 cnvcnvsn 5581 . . . . . . . . 9 {⟨𝐽, 𝑋⟩} = {⟨𝑋, 𝐽⟩}
9 cnvcnvss 5558 . . . . . . . . 9 {⟨𝐽, 𝑋⟩} ⊆ {⟨𝐽, 𝑋⟩}
108, 9eqsstr3i 3621 . . . . . . . 8 {⟨𝑋, 𝐽⟩} ⊆ {⟨𝐽, 𝑋⟩}
11 dmss 5293 . . . . . . . 8 ({⟨𝑋, 𝐽⟩} ⊆ {⟨𝐽, 𝑋⟩} → dom {⟨𝑋, 𝐽⟩} ⊆ dom {⟨𝐽, 𝑋⟩})
1210, 11ax-mp 5 . . . . . . 7 dom {⟨𝑋, 𝐽⟩} ⊆ dom {⟨𝐽, 𝑋⟩}
13 dmsnopss 5576 . . . . . . 7 dom {⟨𝐽, 𝑋⟩} ⊆ {𝐽}
1412, 13sstri 3597 . . . . . 6 dom {⟨𝑋, 𝐽⟩} ⊆ {𝐽}
15 ss2in 3824 . . . . . 6 ((dom 𝐹 ⊆ dom 𝐹 ∧ dom {⟨𝑋, 𝐽⟩} ⊆ {𝐽}) → (dom 𝐹 ∩ dom {⟨𝑋, 𝐽⟩}) ⊆ (dom 𝐹 ∩ {𝐽}))
167, 14, 15mp2an 707 . . . . 5 (dom 𝐹 ∩ dom {⟨𝑋, 𝐽⟩}) ⊆ (dom 𝐹 ∩ {𝐽})
17 strlemor.o . . . . . . . . 9 𝐼 < 𝐽
18 strlemor.i . . . . . . . . . . 11 𝐼 ∈ ℕ0
1918nn0rei 11263 . . . . . . . . . 10 𝐼 ∈ ℝ
20 strlemor.j . . . . . . . . . . 11 𝐽 ∈ ℕ
2120nnrei 10989 . . . . . . . . . 10 𝐽 ∈ ℝ
2219, 21ltnlei 10118 . . . . . . . . 9 (𝐼 < 𝐽 ↔ ¬ 𝐽𝐼)
2317, 22mpbi 220 . . . . . . . 8 ¬ 𝐽𝐼
24 elfzle2 12303 . . . . . . . 8 (𝐽 ∈ (1...𝐼) → 𝐽𝐼)
2523, 24mto 188 . . . . . . 7 ¬ 𝐽 ∈ (1...𝐼)
261simpri 478 . . . . . . . 8 dom 𝐹 ⊆ (1...𝐼)
2726sseli 3584 . . . . . . 7 (𝐽 ∈ dom 𝐹𝐽 ∈ (1...𝐼))
2825, 27mto 188 . . . . . 6 ¬ 𝐽 ∈ dom 𝐹
29 disjsn 4223 . . . . . 6 ((dom 𝐹 ∩ {𝐽}) = ∅ ↔ ¬ 𝐽 ∈ dom 𝐹)
3028, 29mpbir 221 . . . . 5 (dom 𝐹 ∩ {𝐽}) = ∅
31 sseq0 3953 . . . . 5 (((dom 𝐹 ∩ dom {⟨𝑋, 𝐽⟩}) ⊆ (dom 𝐹 ∩ {𝐽}) ∧ (dom 𝐹 ∩ {𝐽}) = ∅) → (dom 𝐹 ∩ dom {⟨𝑋, 𝐽⟩}) = ∅)
3216, 30, 31mp2an 707 . . . 4 (dom 𝐹 ∩ dom {⟨𝑋, 𝐽⟩}) = ∅
33 funun 5900 . . . 4 (((Fun 𝐹 ∧ Fun {⟨𝑋, 𝐽⟩}) ∧ (dom 𝐹 ∩ dom {⟨𝑋, 𝐽⟩}) = ∅) → Fun (𝐹{⟨𝑋, 𝐽⟩}))
344, 32, 33mp2an 707 . . 3 Fun (𝐹{⟨𝑋, 𝐽⟩})
35 strlemor1.g . . . . . . . . 9 𝐺 = (𝐹 ∪ {⟨𝐴, 𝑋⟩})
36 strlemor.a . . . . . . . . . . . 12 𝐴 = 𝐽
3736opeq1i 4380 . . . . . . . . . . 11 𝐴, 𝑋⟩ = ⟨𝐽, 𝑋
3837sneqi 4166 . . . . . . . . . 10 {⟨𝐴, 𝑋⟩} = {⟨𝐽, 𝑋⟩}
3938uneq2i 3748 . . . . . . . . 9 (𝐹 ∪ {⟨𝐴, 𝑋⟩}) = (𝐹 ∪ {⟨𝐽, 𝑋⟩})
4035, 39eqtri 2643 . . . . . . . 8 𝐺 = (𝐹 ∪ {⟨𝐽, 𝑋⟩})
4140cnveqi 5267 . . . . . . 7 𝐺 = (𝐹 ∪ {⟨𝐽, 𝑋⟩})
42 cnvun 5507 . . . . . . 7 (𝐹 ∪ {⟨𝐽, 𝑋⟩}) = (𝐹{⟨𝐽, 𝑋⟩})
4341, 42eqtri 2643 . . . . . 6 𝐺 = (𝐹{⟨𝐽, 𝑋⟩})
4443cnveqi 5267 . . . . 5 𝐺 = (𝐹{⟨𝐽, 𝑋⟩})
45 cnvun 5507 . . . . . 6 (𝐹{⟨𝐽, 𝑋⟩}) = (𝐹{⟨𝐽, 𝑋⟩})
468uneq2i 3748 . . . . . 6 (𝐹{⟨𝐽, 𝑋⟩}) = (𝐹{⟨𝑋, 𝐽⟩})
4745, 46eqtri 2643 . . . . 5 (𝐹{⟨𝐽, 𝑋⟩}) = (𝐹{⟨𝑋, 𝐽⟩})
4844, 47eqtri 2643 . . . 4 𝐺 = (𝐹{⟨𝑋, 𝐽⟩})
4948funeqi 5878 . . 3 (Fun 𝐺 ↔ Fun (𝐹{⟨𝑋, 𝐽⟩}))
5034, 49mpbir 221 . 2 Fun 𝐺
5140dmeqi 5295 . . . 4 dom 𝐺 = dom (𝐹 ∪ {⟨𝐽, 𝑋⟩})
52 dmun 5301 . . . 4 dom (𝐹 ∪ {⟨𝐽, 𝑋⟩}) = (dom 𝐹 ∪ dom {⟨𝐽, 𝑋⟩})
5351, 52eqtri 2643 . . 3 dom 𝐺 = (dom 𝐹 ∪ dom {⟨𝐽, 𝑋⟩})
5418nn0zi 11362 . . . . . . 7 𝐼 ∈ ℤ
5520nnzi 11361 . . . . . . 7 𝐽 ∈ ℤ
5619, 21, 17ltleii 10120 . . . . . . 7 𝐼𝐽
57 eluz2 11653 . . . . . . 7 (𝐽 ∈ (ℤ𝐼) ↔ (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ 𝐼𝐽))
5854, 55, 56, 57mpbir3an 1242 . . . . . 6 𝐽 ∈ (ℤ𝐼)
59 fzss2 12339 . . . . . 6 (𝐽 ∈ (ℤ𝐼) → (1...𝐼) ⊆ (1...𝐽))
6058, 59ax-mp 5 . . . . 5 (1...𝐼) ⊆ (1...𝐽)
6126, 60sstri 3597 . . . 4 dom 𝐹 ⊆ (1...𝐽)
62 elfz1end 12329 . . . . . . 7 (𝐽 ∈ ℕ ↔ 𝐽 ∈ (1...𝐽))
6320, 62mpbi 220 . . . . . 6 𝐽 ∈ (1...𝐽)
64 snssi 4315 . . . . . 6 (𝐽 ∈ (1...𝐽) → {𝐽} ⊆ (1...𝐽))
6563, 64ax-mp 5 . . . . 5 {𝐽} ⊆ (1...𝐽)
6613, 65sstri 3597 . . . 4 dom {⟨𝐽, 𝑋⟩} ⊆ (1...𝐽)
6761, 66unssi 3772 . . 3 (dom 𝐹 ∪ dom {⟨𝐽, 𝑋⟩}) ⊆ (1...𝐽)
6853, 67eqsstri 3620 . 2 dom 𝐺 ⊆ (1...𝐽)
6950, 68pm3.2i 471 1 (Fun 𝐺 ∧ dom 𝐺 ⊆ (1...𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1480  wcel 1987  cun 3558  cin 3559  wss 3560  c0 3897  {csn 4155  cop 4161   class class class wbr 4623  ccnv 5083  dom cdm 5084  Fun wfun 5851  cfv 5857  (class class class)co 6615  1c1 9897   < clt 10034  cle 10035  cn 10980  0cn0 11252  cz 11337  cuz 11647  ...cfz 12284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285
This theorem is referenced by:  strlemor2OLD  15910  strlemor3OLD  15911
  Copyright terms: Public domain W3C validator