![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strlemor3OLD | Structured version Visualization version GIF version |
Description: Add three elements to the end of a structure. Obsolete as of 26-Nov-2021. See comment of strlemor0OLD 16015. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strlemor.f | ⊢ (Fun ◡◡𝐹 ∧ dom 𝐹 ⊆ (1...𝐼)) |
strlemor.i | ⊢ 𝐼 ∈ ℕ0 |
strlemor.o | ⊢ 𝐼 < 𝐽 |
strlemor.j | ⊢ 𝐽 ∈ ℕ |
strlemor.a | ⊢ 𝐴 = 𝐽 |
strlemor2.o | ⊢ 𝐽 < 𝐾 |
strlemor2.k | ⊢ 𝐾 ∈ ℕ |
strlemor2.b | ⊢ 𝐵 = 𝐾 |
strlemor3.o | ⊢ 𝐾 < 𝐿 |
strlemor3.l | ⊢ 𝐿 ∈ ℕ |
strlemor3.c | ⊢ 𝐶 = 𝐿 |
strlemor3.g | ⊢ 𝐺 = (𝐹 ∪ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}) |
Ref | Expression |
---|---|
strlemor3OLD | ⊢ (Fun ◡◡𝐺 ∧ dom 𝐺 ⊆ (1...𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strlemor.f | . . 3 ⊢ (Fun ◡◡𝐹 ∧ dom 𝐹 ⊆ (1...𝐼)) | |
2 | strlemor.i | . . 3 ⊢ 𝐼 ∈ ℕ0 | |
3 | strlemor.o | . . 3 ⊢ 𝐼 < 𝐽 | |
4 | strlemor.j | . . 3 ⊢ 𝐽 ∈ ℕ | |
5 | strlemor.a | . . 3 ⊢ 𝐴 = 𝐽 | |
6 | strlemor2.o | . . 3 ⊢ 𝐽 < 𝐾 | |
7 | strlemor2.k | . . 3 ⊢ 𝐾 ∈ ℕ | |
8 | strlemor2.b | . . 3 ⊢ 𝐵 = 𝐾 | |
9 | eqid 2651 | . . 3 ⊢ (𝐹 ∪ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉}) = (𝐹 ∪ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉}) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | strlemor2OLD 16017 | . 2 ⊢ (Fun ◡◡(𝐹 ∪ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉}) ∧ dom (𝐹 ∪ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉}) ⊆ (1...𝐾)) |
11 | 7 | nnnn0i 11338 | . 2 ⊢ 𝐾 ∈ ℕ0 |
12 | strlemor3.o | . 2 ⊢ 𝐾 < 𝐿 | |
13 | strlemor3.l | . 2 ⊢ 𝐿 ∈ ℕ | |
14 | strlemor3.c | . 2 ⊢ 𝐶 = 𝐿 | |
15 | df-tp 4215 | . . . 4 ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉} = ({〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} ∪ {〈𝐶, 𝑍〉}) | |
16 | 15 | uneq2i 3797 | . . 3 ⊢ (𝐹 ∪ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}) = (𝐹 ∪ ({〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} ∪ {〈𝐶, 𝑍〉})) |
17 | strlemor3.g | . . 3 ⊢ 𝐺 = (𝐹 ∪ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}) | |
18 | unass 3803 | . . 3 ⊢ ((𝐹 ∪ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉}) ∪ {〈𝐶, 𝑍〉}) = (𝐹 ∪ ({〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} ∪ {〈𝐶, 𝑍〉})) | |
19 | 16, 17, 18 | 3eqtr4i 2683 | . 2 ⊢ 𝐺 = ((𝐹 ∪ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉}) ∪ {〈𝐶, 𝑍〉}) |
20 | 10, 11, 12, 13, 14, 19 | strlemor1OLD 16016 | 1 ⊢ (Fun ◡◡𝐺 ∧ dom 𝐺 ⊆ (1...𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∪ cun 3605 ⊆ wss 3607 {csn 4210 {cpr 4212 {ctp 4214 〈cop 4216 class class class wbr 4685 ◡ccnv 5142 dom cdm 5143 Fun wfun 5920 (class class class)co 6690 1c1 9975 < clt 10112 ℕcn 11058 ℕ0cn0 11330 ...cfz 12364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |