MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strleun Structured version   Visualization version   GIF version

Theorem strleun 16585
Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.)
Hypotheses
Ref Expression
strleun.f 𝐹 Struct ⟨𝐴, 𝐵
strleun.g 𝐺 Struct ⟨𝐶, 𝐷
strleun.l 𝐵 < 𝐶
Assertion
Ref Expression
strleun (𝐹𝐺) Struct ⟨𝐴, 𝐷

Proof of Theorem strleun
StepHypRef Expression
1 strleun.f . . . . . 6 𝐹 Struct ⟨𝐴, 𝐵
2 isstruct 16490 . . . . . 6 (𝐹 Struct ⟨𝐴, 𝐵⟩ ↔ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
31, 2mpbi 232 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))
43simp1i 1135 . . . 4 (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵)
54simp1i 1135 . . 3 𝐴 ∈ ℕ
6 strleun.g . . . . . 6 𝐺 Struct ⟨𝐶, 𝐷
7 isstruct 16490 . . . . . 6 (𝐺 Struct ⟨𝐶, 𝐷⟩ ↔ ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷)))
86, 7mpbi 232 . . . . 5 ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷))
98simp1i 1135 . . . 4 (𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷)
109simp2i 1136 . . 3 𝐷 ∈ ℕ
114simp3i 1137 . . . . 5 𝐴𝐵
124simp2i 1136 . . . . . . 7 𝐵 ∈ ℕ
1312nnrei 11641 . . . . . 6 𝐵 ∈ ℝ
149simp1i 1135 . . . . . . 7 𝐶 ∈ ℕ
1514nnrei 11641 . . . . . 6 𝐶 ∈ ℝ
16 strleun.l . . . . . 6 𝐵 < 𝐶
1713, 15, 16ltleii 10757 . . . . 5 𝐵𝐶
185nnrei 11641 . . . . . 6 𝐴 ∈ ℝ
1918, 13, 15letri 10763 . . . . 5 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
2011, 17, 19mp2an 690 . . . 4 𝐴𝐶
219simp3i 1137 . . . 4 𝐶𝐷
2210nnrei 11641 . . . . 5 𝐷 ∈ ℝ
2318, 15, 22letri 10763 . . . 4 ((𝐴𝐶𝐶𝐷) → 𝐴𝐷)
2420, 21, 23mp2an 690 . . 3 𝐴𝐷
255, 10, 243pm3.2i 1335 . 2 (𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴𝐷)
263simp2i 1136 . . . . 5 Fun (𝐹 ∖ {∅})
278simp2i 1136 . . . . 5 Fun (𝐺 ∖ {∅})
2826, 27pm3.2i 473 . . . 4 (Fun (𝐹 ∖ {∅}) ∧ Fun (𝐺 ∖ {∅}))
29 difss 4108 . . . . . . . 8 (𝐹 ∖ {∅}) ⊆ 𝐹
30 dmss 5766 . . . . . . . 8 ((𝐹 ∖ {∅}) ⊆ 𝐹 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
3129, 30ax-mp 5 . . . . . . 7 dom (𝐹 ∖ {∅}) ⊆ dom 𝐹
323simp3i 1137 . . . . . . 7 dom 𝐹 ⊆ (𝐴...𝐵)
3331, 32sstri 3976 . . . . . 6 dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵)
34 difss 4108 . . . . . . . 8 (𝐺 ∖ {∅}) ⊆ 𝐺
35 dmss 5766 . . . . . . . 8 ((𝐺 ∖ {∅}) ⊆ 𝐺 → dom (𝐺 ∖ {∅}) ⊆ dom 𝐺)
3634, 35ax-mp 5 . . . . . . 7 dom (𝐺 ∖ {∅}) ⊆ dom 𝐺
378simp3i 1137 . . . . . . 7 dom 𝐺 ⊆ (𝐶...𝐷)
3836, 37sstri 3976 . . . . . 6 dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)
39 ss2in 4213 . . . . . 6 ((dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵) ∧ dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)))
4033, 38, 39mp2an 690 . . . . 5 (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷))
41 fzdisj 12928 . . . . . 6 (𝐵 < 𝐶 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅)
4216, 41ax-mp 5 . . . . 5 ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅
43 sseq0 4353 . . . . 5 (((dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)) ∧ ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅)
4440, 42, 43mp2an 690 . . . 4 (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅
45 funun 6395 . . . 4 (((Fun (𝐹 ∖ {∅}) ∧ Fun (𝐺 ∖ {∅})) ∧ (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅) → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4628, 44, 45mp2an 690 . . 3 Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))
47 difundir 4257 . . . 4 ((𝐹𝐺) ∖ {∅}) = ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))
4847funeqi 6371 . . 3 (Fun ((𝐹𝐺) ∖ {∅}) ↔ Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4946, 48mpbir 233 . 2 Fun ((𝐹𝐺) ∖ {∅})
50 dmun 5774 . . 3 dom (𝐹𝐺) = (dom 𝐹 ∪ dom 𝐺)
5112nnzi 12000 . . . . . . 7 𝐵 ∈ ℤ
5210nnzi 12000 . . . . . . 7 𝐷 ∈ ℤ
5313, 15, 22letri 10763 . . . . . . . 8 ((𝐵𝐶𝐶𝐷) → 𝐵𝐷)
5417, 21, 53mp2an 690 . . . . . . 7 𝐵𝐷
55 eluz2 12243 . . . . . . 7 (𝐷 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐵𝐷))
5651, 52, 54, 55mpbir3an 1337 . . . . . 6 𝐷 ∈ (ℤ𝐵)
57 fzss2 12941 . . . . . 6 (𝐷 ∈ (ℤ𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐷))
5856, 57ax-mp 5 . . . . 5 (𝐴...𝐵) ⊆ (𝐴...𝐷)
5932, 58sstri 3976 . . . 4 dom 𝐹 ⊆ (𝐴...𝐷)
605nnzi 12000 . . . . . . 7 𝐴 ∈ ℤ
6114nnzi 12000 . . . . . . 7 𝐶 ∈ ℤ
62 eluz2 12243 . . . . . . 7 (𝐶 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶))
6360, 61, 20, 62mpbir3an 1337 . . . . . 6 𝐶 ∈ (ℤ𝐴)
64 fzss1 12940 . . . . . 6 (𝐶 ∈ (ℤ𝐴) → (𝐶...𝐷) ⊆ (𝐴...𝐷))
6563, 64ax-mp 5 . . . . 5 (𝐶...𝐷) ⊆ (𝐴...𝐷)
6637, 65sstri 3976 . . . 4 dom 𝐺 ⊆ (𝐴...𝐷)
6759, 66unssi 4161 . . 3 (dom 𝐹 ∪ dom 𝐺) ⊆ (𝐴...𝐷)
6850, 67eqsstri 4001 . 2 dom (𝐹𝐺) ⊆ (𝐴...𝐷)
69 isstruct 16490 . 2 ((𝐹𝐺) Struct ⟨𝐴, 𝐷⟩ ↔ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴𝐷) ∧ Fun ((𝐹𝐺) ∖ {∅}) ∧ dom (𝐹𝐺) ⊆ (𝐴...𝐷)))
7025, 49, 68, 69mpbir3an 1337 1 (𝐹𝐺) Struct ⟨𝐴, 𝐷
Colors of variables: wff setvar class
Syntax hints:  wa 398  w3a 1083   = wceq 1533  wcel 2110  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  {csn 4561  cop 4567   class class class wbr 5059  dom cdm 5550  Fun wfun 6344  cfv 6350  (class class class)co 7150   < clt 10669  cle 10670  cn 11632  cz 11975  cuz 12237  ...cfz 12886   Struct cstr 16473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-struct 16479
This theorem is referenced by:  strle2  16587  strle3  16588  srngstr  16621  lmodstr  16630  ipsstr  16637  phlstr  16647  odrngstr  16673  imasvalstr  16719  prdsvalstr  16720  ipostr  17757  psrvalstr  20137  cnfldstr  20541  eengstr  26760  algstr  39770
  Copyright terms: Public domain W3C validator