Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  structex Structured version   Visualization version   GIF version

Theorem structex 15915
 Description: A structure is a set. (Contributed by AV, 10-Nov-2021.)
Assertion
Ref Expression
structex (𝐺 Struct 𝑋𝐺 ∈ V)

Proof of Theorem structex
StepHypRef Expression
1 brstruct 15913 . 2 Rel Struct
21brrelexi 5192 1 (𝐺 Struct 𝑋𝐺 ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2030  Vcvv 3231   class class class wbr 4685   Struct cstr 15900 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149  df-rel 5150  df-struct 15906 This theorem is referenced by:  setsn0fun  15942  setsstruct2  15943  strfv  15954  basprssdmsets  15972  opelstrbas  16025  cnfldex  19797  edgfiedgval  25947  structgrssvtxlem  25957  setsiedg  25973
 Copyright terms: Public domain W3C validator