![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > structgrssvtxlemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of structgrssvtxlem 25957 as of 14-Nov-2021. (Contributed by AV, 14-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
structgrssvtxOLD.g | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
structgrssvtxOLD.f | ⊢ (𝜑 → Fun 𝐺) |
structgrssvtxOLD.v | ⊢ (𝜑 → 𝑉 ∈ 𝑌) |
structgrssvtxOLD.e | ⊢ (𝜑 → 𝐸 ∈ 𝑍) |
structgrssvtxOLD.s | ⊢ (𝜑 → {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ 𝐺) |
Ref | Expression |
---|---|
structgrssvtxlemOLD | ⊢ (𝜑 → 2 ≤ (#‘dom 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | structgrssvtxOLD.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
2 | dmexg 7139 | . . 3 ⊢ (𝐺 ∈ 𝑋 → dom 𝐺 ∈ V) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → dom 𝐺 ∈ V) |
4 | structgrssvtxOLD.v | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ 𝑌) | |
5 | structgrssvtxOLD.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑍) | |
6 | dmpropg 5644 | . . . . 5 ⊢ ((𝑉 ∈ 𝑌 ∧ 𝐸 ∈ 𝑍) → dom {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} = {(Base‘ndx), (.ef‘ndx)}) | |
7 | 4, 5, 6 | syl2anc 694 | . . . 4 ⊢ (𝜑 → dom {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} = {(Base‘ndx), (.ef‘ndx)}) |
8 | structgrssvtxOLD.s | . . . . 5 ⊢ (𝜑 → {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ 𝐺) | |
9 | dmss 5355 | . . . . 5 ⊢ ({〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ 𝐺 → dom {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ dom 𝐺) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → dom {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⊆ dom 𝐺) |
11 | 7, 10 | eqsstr3d 3673 | . . 3 ⊢ (𝜑 → {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) |
12 | fvex 6239 | . . . . 5 ⊢ (Base‘ndx) ∈ V | |
13 | fvex 6239 | . . . . 5 ⊢ (.ef‘ndx) ∈ V | |
14 | 12, 13 | prss 4383 | . . . 4 ⊢ (((Base‘ndx) ∈ dom 𝐺 ∧ (.ef‘ndx) ∈ dom 𝐺) ↔ {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) |
15 | slotsbaseefdif 25918 | . . . . . 6 ⊢ (Base‘ndx) ≠ (.ef‘ndx) | |
16 | neeq1 2885 | . . . . . . 7 ⊢ (𝑎 = (Base‘ndx) → (𝑎 ≠ 𝑏 ↔ (Base‘ndx) ≠ 𝑏)) | |
17 | neeq2 2886 | . . . . . . 7 ⊢ (𝑏 = (.ef‘ndx) → ((Base‘ndx) ≠ 𝑏 ↔ (Base‘ndx) ≠ (.ef‘ndx))) | |
18 | 16, 17 | rspc2ev 3355 | . . . . . 6 ⊢ (((Base‘ndx) ∈ dom 𝐺 ∧ (.ef‘ndx) ∈ dom 𝐺 ∧ (Base‘ndx) ≠ (.ef‘ndx)) → ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏) |
19 | 15, 18 | mp3an3 1453 | . . . . 5 ⊢ (((Base‘ndx) ∈ dom 𝐺 ∧ (.ef‘ndx) ∈ dom 𝐺) → ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏) |
20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → (((Base‘ndx) ∈ dom 𝐺 ∧ (.ef‘ndx) ∈ dom 𝐺) → ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏)) |
21 | 14, 20 | syl5bir 233 | . . 3 ⊢ (𝜑 → ({(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺 → ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏)) |
22 | 11, 21 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏) |
23 | hashge2el2difr 13301 | . 2 ⊢ ((dom 𝐺 ∈ V ∧ ∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏) → 2 ≤ (#‘dom 𝐺)) | |
24 | 3, 22, 23 | syl2anc 694 | 1 ⊢ (𝜑 → 2 ≤ (#‘dom 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∃wrex 2942 Vcvv 3231 ⊆ wss 3607 {cpr 4212 〈cop 4216 class class class wbr 4685 dom cdm 5143 Fun wfun 5920 ‘cfv 5926 ≤ cle 10113 2c2 11108 #chash 13157 ndxcnx 15901 Basecbs 15904 .efcedgf 25912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-xnn0 11402 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-hash 13158 df-ndx 15907 df-slot 15908 df-base 15910 df-edgf 25913 |
This theorem is referenced by: structgrssvtxOLD 25961 structgrssiedgOLD 25962 |
Copyright terms: Public domain | W3C validator |