MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subaddeqd Structured version   Visualization version   GIF version

Theorem subaddeqd 10443
Description: Transfer two terms of a subtraction to an addition in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.)
Hypotheses
Ref Expression
subaddeqd.a (𝜑𝐴 ∈ ℂ)
subaddeqd.b (𝜑𝐵 ∈ ℂ)
subaddeqd.c (𝜑𝐶 ∈ ℂ)
subaddeqd.d (𝜑𝐷 ∈ ℂ)
subaddeqd.1 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
Assertion
Ref Expression
subaddeqd (𝜑 → (𝐴𝐷) = (𝐶𝐵))

Proof of Theorem subaddeqd
StepHypRef Expression
1 subaddeqd.1 . . . 4 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
21oveq1d 6662 . . 3 (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = ((𝐶 + 𝐷) − (𝐷 + 𝐵)))
3 subaddeqd.c . . . . 5 (𝜑𝐶 ∈ ℂ)
4 subaddeqd.d . . . . 5 (𝜑𝐷 ∈ ℂ)
53, 4addcomd 10235 . . . 4 (𝜑 → (𝐶 + 𝐷) = (𝐷 + 𝐶))
65oveq1d 6662 . . 3 (𝜑 → ((𝐶 + 𝐷) − (𝐷 + 𝐵)) = ((𝐷 + 𝐶) − (𝐷 + 𝐵)))
72, 6eqtrd 2655 . 2 (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = ((𝐷 + 𝐶) − (𝐷 + 𝐵)))
8 subaddeqd.a . . 3 (𝜑𝐴 ∈ ℂ)
9 subaddeqd.b . . 3 (𝜑𝐵 ∈ ℂ)
108, 4, 9pnpcan2d 10427 . 2 (𝜑 → ((𝐴 + 𝐵) − (𝐷 + 𝐵)) = (𝐴𝐷))
114, 3, 9pnpcand 10426 . 2 (𝜑 → ((𝐷 + 𝐶) − (𝐷 + 𝐵)) = (𝐶𝐵))
127, 10, 113eqtr3d 2663 1 (𝜑 → (𝐴𝐷) = (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1482  wcel 1989  (class class class)co 6647  cc 9931   + caddc 9936  cmin 10263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-po 5033  df-so 5034  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-ltxr 10076  df-sub 10265
This theorem is referenced by:  2sqmod  29633  fmtnorec4  41232
  Copyright terms: Public domain W3C validator