MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subbascn Structured version   Visualization version   GIF version

Theorem subbascn 21260
Description: The continuity predicate when the range is given by a subbasis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
subbascn.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
subbascn.2 (𝜑𝐵𝑉)
subbascn.3 (𝜑𝐾 = (topGen‘(fi‘𝐵)))
subbascn.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
subbascn (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐽   𝑦,𝑋   𝑦,𝑌   𝑦,𝐾
Allowed substitution hints:   𝜑(𝑦)   𝑉(𝑦)

Proof of Theorem subbascn
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subbascn.1 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 subbascn.3 . . 3 (𝜑𝐾 = (topGen‘(fi‘𝐵)))
3 subbascn.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
41, 2, 3tgcn 21258 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽)))
5 subbascn.2 . . . . . 6 (𝜑𝐵𝑉)
65adantr 472 . . . . 5 ((𝜑𝐹:𝑋𝑌) → 𝐵𝑉)
7 ssfii 8490 . . . . 5 (𝐵𝑉𝐵 ⊆ (fi‘𝐵))
8 ssralv 3807 . . . . 5 (𝐵 ⊆ (fi‘𝐵) → (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
96, 7, 83syl 18 . . . 4 ((𝜑𝐹:𝑋𝑌) → (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
10 vex 3343 . . . . . . . . 9 𝑥 ∈ V
11 elfi 8484 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝐵𝑉) → (𝑥 ∈ (fi‘𝐵) ↔ ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = 𝑧))
1210, 6, 11sylancr 698 . . . . . . . 8 ((𝜑𝐹:𝑋𝑌) → (𝑥 ∈ (fi‘𝐵) ↔ ∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = 𝑧))
13 simpr2 1236 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑥 = 𝑧)
1413imaeq2d 5624 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑥) = (𝐹 𝑧))
15 ffun 6209 . . . . . . . . . . . . . 14 (𝐹:𝑋𝑌 → Fun 𝐹)
1615ad2antlr 765 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → Fun 𝐹)
1713, 10syl6eqelr 2848 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ V)
18 intex 4969 . . . . . . . . . . . . . 14 (𝑧 ≠ ∅ ↔ 𝑧 ∈ V)
1917, 18sylibr 224 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ≠ ∅)
20 intpreima 6509 . . . . . . . . . . . . 13 ((Fun 𝐹𝑧 ≠ ∅) → (𝐹 𝑧) = 𝑦𝑧 (𝐹𝑦))
2116, 19, 20syl2anc 696 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹 𝑧) = 𝑦𝑧 (𝐹𝑦))
2214, 21eqtrd 2794 . . . . . . . . . . 11 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑥) = 𝑦𝑧 (𝐹𝑦))
23 topontop 20920 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
241, 23syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
2524ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝐽 ∈ Top)
26 inss2 3977 . . . . . . . . . . . . 13 (𝒫 𝐵 ∩ Fin) ⊆ Fin
27 simpr1 1234 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ (𝒫 𝐵 ∩ Fin))
2826, 27sseldi 3742 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ Fin)
29 inss1 3976 . . . . . . . . . . . . . . 15 (𝒫 𝐵 ∩ Fin) ⊆ 𝒫 𝐵
3029, 27sseldi 3742 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧 ∈ 𝒫 𝐵)
3130elpwid 4314 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑧𝐵)
32 simpr3 1238 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)
33 ssralv 3807 . . . . . . . . . . . . 13 (𝑧𝐵 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
3431, 32, 33sylc 65 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
35 iinopn 20909 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑧 ∈ Fin ∧ 𝑧 ≠ ∅ ∧ ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽)) → 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
3625, 28, 19, 34, 35syl13anc 1479 . . . . . . . . . . 11 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
3722, 36eqeltrd 2839 . . . . . . . . . 10 (((𝜑𝐹:𝑋𝑌) ∧ (𝑧 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑥 = 𝑧 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑥) ∈ 𝐽)
38373exp2 1448 . . . . . . . . 9 ((𝜑𝐹:𝑋𝑌) → (𝑧 ∈ (𝒫 𝐵 ∩ Fin) → (𝑥 = 𝑧 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽))))
3938rexlimdv 3168 . . . . . . . 8 ((𝜑𝐹:𝑋𝑌) → (∃𝑧 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = 𝑧 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
4012, 39sylbid 230 . . . . . . 7 ((𝜑𝐹:𝑋𝑌) → (𝑥 ∈ (fi‘𝐵) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
4140com23 86 . . . . . 6 ((𝜑𝐹:𝑋𝑌) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝑥 ∈ (fi‘𝐵) → (𝐹𝑥) ∈ 𝐽)))
4241ralrimdv 3106 . . . . 5 ((𝜑𝐹:𝑋𝑌) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑥 ∈ (fi‘𝐵)(𝐹𝑥) ∈ 𝐽))
43 imaeq2 5620 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
4443eleq1d 2824 . . . . . 6 (𝑦 = 𝑥 → ((𝐹𝑦) ∈ 𝐽 ↔ (𝐹𝑥) ∈ 𝐽))
4544cbvralv 3310 . . . . 5 (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (fi‘𝐵)(𝐹𝑥) ∈ 𝐽)
4642, 45syl6ibr 242 . . . 4 ((𝜑𝐹:𝑋𝑌) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽))
479, 46impbid 202 . . 3 ((𝜑𝐹:𝑋𝑌) → (∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽 ↔ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
4847pm5.32da 676 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (fi‘𝐵)(𝐹𝑦) ∈ 𝐽) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
494, 48bitrd 268 1 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  Vcvv 3340  cin 3714  wss 3715  c0 4058  𝒫 cpw 4302   cint 4627   ciin 4673  ccnv 5265  cima 5269  Fun wfun 6043  wf 6045  cfv 6049  (class class class)co 6813  Fincfn 8121  ficfi 8481  topGenctg 16300  Topctop 20900  TopOnctopon 20917   Cn ccn 21230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-fin 8125  df-fi 8482  df-topgen 16306  df-top 20901  df-topon 20918  df-bases 20952  df-cn 21233
This theorem is referenced by:  xkoccn  21624  ptrescn  21644  xkoco1cn  21662  xkoco2cn  21663  xkococn  21665  xkoinjcn  21692  ordthmeolem  21806
  Copyright terms: Public domain W3C validator