MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subeq0ad Structured version   Visualization version   GIF version

Theorem subeq0ad 10594
Description: The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 10499. Generalization of subeq0d 10592. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
subeq0ad (𝜑 → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))

Proof of Theorem subeq0ad
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subeq0 10499 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
41, 2, 3syl2anc 696 1 (𝜑 → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wcel 2139  (class class class)co 6813  cc 10126  0cc0 10128  cmin 10458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-ltxr 10271  df-sub 10460
This theorem is referenced by:  subne0ad  10595  subeq0bd  10648  muleqadd  10863  mulcan1g  10872  ofsubeq0  11209  nn0n0n1ge2  11550  mod0  12869  modirr  12935  addmodlteq  12939  sqreulem  14298  sqreu  14299  tanaddlem  15095  fldivp1  15803  4sqlem11  15861  4sqlem16  15866  znf1o  20102  cphsqrtcl2  23186  rrxmet  23391  dvcobr  23908  dvcnvlem  23938  cmvth  23953  dvlip  23955  lhop1lem  23975  ftc1lem5  24002  aalioulem2  24287  sineq0  24472  tanarg  24564  affineequiv  24752  quad2  24765  dcubic  24772  eqeelen  25983  colinearalg  25989  axcontlem7  26049  ipasslem9  28002  ip2eqi  28021  hi2eq  28271  lnopeqi  29176  riesz3i  29230  signslema  30948  circlemeth  31027  poimirlem32  33754  broucube  33756  rrnmet  33941  eqrabdioph  37843  pellexlem1  37895  sineq0ALT  39672  digexp  42911
  Copyright terms: Public domain W3C validator