MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subeq0d Structured version   Visualization version   GIF version

Theorem subeq0d 10345
Description: If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subeq0d.3 (𝜑 → (𝐴𝐵) = 0)
Assertion
Ref Expression
subeq0d (𝜑𝐴 = 𝐵)

Proof of Theorem subeq0d
StepHypRef Expression
1 subeq0d.3 . 2 (𝜑 → (𝐴𝐵) = 0)
2 negidd.1 . . 3 (𝜑𝐴 ∈ ℂ)
3 pncand.2 . . 3 (𝜑𝐵 ∈ ℂ)
4 subeq0 10252 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
52, 3, 4syl2anc 692 . 2 (𝜑 → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
61, 5mpbid 222 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  wcel 1992  (class class class)co 6605  cc 9879  0cc0 9881  cmin 10211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-ltxr 10024  df-sub 10213
This theorem is referenced by:  cru  10957  crre  13783  incexc  14489  bitsinv1lem  15082  4sqlem10  15570  xrsxmet  22515  zdis  22522  dveq0  23662  dvivthlem1  23670  efif1olem4  24190  dquartlem2  24474  lgsdirprm  24951  ipasslem2  27527  2sqmod  29425  dvasin  33114  dvacos  33115  congabseq  37007
  Copyright terms: Public domain W3C validator