Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacval3 Structured version   Visualization version   GIF version

Theorem subfacval3 30900
Description: Another closed form expression for the subfactorial. The expression ⌊‘(𝑥 + 1 / 2) is a way of saying "rounded to the nearest integer". (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (#‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfacval3 (𝑁 ∈ ℕ → (𝑆𝑁) = (⌊‘(((!‘𝑁) / e) + (1 / 2))))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfacval3
StepHypRef Expression
1 nnnn0 11246 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 derang.d . . . . . . . . 9 𝐷 = (𝑥 ∈ Fin ↦ (#‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
3 subfac.n . . . . . . . . 9 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
42, 3subfacf 30886 . . . . . . . 8 𝑆:ℕ0⟶ℕ0
54ffvelrni 6316 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑆𝑁) ∈ ℕ0)
61, 5syl 17 . . . . . 6 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℕ0)
76nn0zd 11427 . . . . 5 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℤ)
87zred 11429 . . . 4 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℝ)
9 faccl 13013 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
101, 9syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
1110nnred 10982 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ)
12 epr 14864 . . . . . 6 e ∈ ℝ+
13 rerpdivcl 11808 . . . . . 6 (((!‘𝑁) ∈ ℝ ∧ e ∈ ℝ+) → ((!‘𝑁) / e) ∈ ℝ)
1411, 12, 13sylancl 693 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) / e) ∈ ℝ)
15 halfre 11193 . . . . 5 (1 / 2) ∈ ℝ
16 readdcl 9966 . . . . 5 ((((!‘𝑁) / e) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((!‘𝑁) / e) + (1 / 2)) ∈ ℝ)
1714, 15, 16sylancl 693 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) / e) + (1 / 2)) ∈ ℝ)
18 elnn1uz2 11712 . . . . . . . 8 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
19 fveq2 6150 . . . . . . . . . . . . . . . 16 (𝑁 = 1 → (!‘𝑁) = (!‘1))
20 fac1 13007 . . . . . . . . . . . . . . . 16 (!‘1) = 1
2119, 20syl6eq 2671 . . . . . . . . . . . . . . 15 (𝑁 = 1 → (!‘𝑁) = 1)
2221oveq1d 6622 . . . . . . . . . . . . . 14 (𝑁 = 1 → ((!‘𝑁) / e) = (1 / e))
23 fveq2 6150 . . . . . . . . . . . . . . 15 (𝑁 = 1 → (𝑆𝑁) = (𝑆‘1))
242, 3subfac1 30889 . . . . . . . . . . . . . . 15 (𝑆‘1) = 0
2523, 24syl6eq 2671 . . . . . . . . . . . . . 14 (𝑁 = 1 → (𝑆𝑁) = 0)
2622, 25oveq12d 6625 . . . . . . . . . . . . 13 (𝑁 = 1 → (((!‘𝑁) / e) − (𝑆𝑁)) = ((1 / e) − 0))
27 rpreccl 11804 . . . . . . . . . . . . . . . . 17 (e ∈ ℝ+ → (1 / e) ∈ ℝ+)
2812, 27ax-mp 5 . . . . . . . . . . . . . . . 16 (1 / e) ∈ ℝ+
29 rpre 11786 . . . . . . . . . . . . . . . 16 ((1 / e) ∈ ℝ+ → (1 / e) ∈ ℝ)
3028, 29ax-mp 5 . . . . . . . . . . . . . . 15 (1 / e) ∈ ℝ
3130recni 9999 . . . . . . . . . . . . . 14 (1 / e) ∈ ℂ
3231subid1i 10300 . . . . . . . . . . . . 13 ((1 / e) − 0) = (1 / e)
3326, 32syl6eq 2671 . . . . . . . . . . . 12 (𝑁 = 1 → (((!‘𝑁) / e) − (𝑆𝑁)) = (1 / e))
3433fveq2d 6154 . . . . . . . . . . 11 (𝑁 = 1 → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = (abs‘(1 / e)))
35 rpge0 11792 . . . . . . . . . . . . 13 ((1 / e) ∈ ℝ+ → 0 ≤ (1 / e))
3628, 35ax-mp 5 . . . . . . . . . . . 12 0 ≤ (1 / e)
37 absid 13973 . . . . . . . . . . . 12 (((1 / e) ∈ ℝ ∧ 0 ≤ (1 / e)) → (abs‘(1 / e)) = (1 / e))
3830, 36, 37mp2an 707 . . . . . . . . . . 11 (abs‘(1 / e)) = (1 / e)
3934, 38syl6eq 2671 . . . . . . . . . 10 (𝑁 = 1 → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = (1 / e))
40 egt2lt3 14862 . . . . . . . . . . . 12 (2 < e ∧ e < 3)
4140simpli 474 . . . . . . . . . . 11 2 < e
42 2re 11037 . . . . . . . . . . . 12 2 ∈ ℝ
43 ere 14747 . . . . . . . . . . . 12 e ∈ ℝ
44 2pos 11059 . . . . . . . . . . . 12 0 < 2
45 epos 14863 . . . . . . . . . . . 12 0 < e
4642, 43, 44, 45ltrecii 10887 . . . . . . . . . . 11 (2 < e ↔ (1 / e) < (1 / 2))
4741, 46mpbi 220 . . . . . . . . . 10 (1 / e) < (1 / 2)
4839, 47syl6eqbr 4654 . . . . . . . . 9 (𝑁 = 1 → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
49 eluz2nn 11673 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
5014, 8resubcld 10405 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℝ)
5150recnd 10015 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℂ)
5249, 51syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℂ)
5352abscld 14112 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) ∈ ℝ)
5449nnrecred 11013 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 / 𝑁) ∈ ℝ)
5515a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 / 2) ∈ ℝ)
562, 3subfaclim 30899 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
5749, 56syl 17 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
58 eluzle 11647 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
59 nnre 10974 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
60 nngt0 10996 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 0 < 𝑁)
61 lerec 10853 . . . . . . . . . . . . . 14 (((2 ∈ ℝ ∧ 0 < 2) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6242, 44, 61mpanl12 717 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 0 < 𝑁) → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6359, 60, 62syl2anc 692 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6449, 63syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (2 ≤ 𝑁 ↔ (1 / 𝑁) ≤ (1 / 2)))
6558, 64mpbid 222 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (1 / 𝑁) ≤ (1 / 2))
6653, 54, 55, 57, 65ltletrd 10144 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
6748, 66jaoi 394 . . . . . . . 8 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
6818, 67sylbi 207 . . . . . . 7 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2))
6915a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / 2) ∈ ℝ)
7014, 8, 69absdifltd 14109 . . . . . . 7 (𝑁 ∈ ℕ → ((abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 2) ↔ (((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e) ∧ ((!‘𝑁) / e) < ((𝑆𝑁) + (1 / 2)))))
7168, 70mpbid 222 . . . . . 6 (𝑁 ∈ ℕ → (((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e) ∧ ((!‘𝑁) / e) < ((𝑆𝑁) + (1 / 2))))
7271simpld 475 . . . . 5 (𝑁 ∈ ℕ → ((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e))
738, 69, 14ltsubaddd 10570 . . . . 5 (𝑁 ∈ ℕ → (((𝑆𝑁) − (1 / 2)) < ((!‘𝑁) / e) ↔ (𝑆𝑁) < (((!‘𝑁) / e) + (1 / 2))))
7472, 73mpbid 222 . . . 4 (𝑁 ∈ ℕ → (𝑆𝑁) < (((!‘𝑁) / e) + (1 / 2)))
758, 17, 74ltled 10132 . . 3 (𝑁 ∈ ℕ → (𝑆𝑁) ≤ (((!‘𝑁) / e) + (1 / 2)))
76 readdcl 9966 . . . . . 6 (((𝑆𝑁) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((𝑆𝑁) + (1 / 2)) ∈ ℝ)
778, 15, 76sylancl 693 . . . . 5 (𝑁 ∈ ℕ → ((𝑆𝑁) + (1 / 2)) ∈ ℝ)
7871simprd 479 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) / e) < ((𝑆𝑁) + (1 / 2)))
7914, 77, 69, 78ltadd1dd 10585 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) / e) + (1 / 2)) < (((𝑆𝑁) + (1 / 2)) + (1 / 2)))
808recnd 10015 . . . . . 6 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℂ)
8169recnd 10015 . . . . . 6 (𝑁 ∈ ℕ → (1 / 2) ∈ ℂ)
8280, 81, 81addassd 10009 . . . . 5 (𝑁 ∈ ℕ → (((𝑆𝑁) + (1 / 2)) + (1 / 2)) = ((𝑆𝑁) + ((1 / 2) + (1 / 2))))
83 ax-1cn 9941 . . . . . . 7 1 ∈ ℂ
84 2halves 11207 . . . . . . 7 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
8583, 84ax-mp 5 . . . . . 6 ((1 / 2) + (1 / 2)) = 1
8685oveq2i 6618 . . . . 5 ((𝑆𝑁) + ((1 / 2) + (1 / 2))) = ((𝑆𝑁) + 1)
8782, 86syl6eq 2671 . . . 4 (𝑁 ∈ ℕ → (((𝑆𝑁) + (1 / 2)) + (1 / 2)) = ((𝑆𝑁) + 1))
8879, 87breqtrd 4641 . . 3 (𝑁 ∈ ℕ → (((!‘𝑁) / e) + (1 / 2)) < ((𝑆𝑁) + 1))
89 flbi 12560 . . . 4 (((((!‘𝑁) / e) + (1 / 2)) ∈ ℝ ∧ (𝑆𝑁) ∈ ℤ) → ((⌊‘(((!‘𝑁) / e) + (1 / 2))) = (𝑆𝑁) ↔ ((𝑆𝑁) ≤ (((!‘𝑁) / e) + (1 / 2)) ∧ (((!‘𝑁) / e) + (1 / 2)) < ((𝑆𝑁) + 1))))
9017, 7, 89syl2anc 692 . . 3 (𝑁 ∈ ℕ → ((⌊‘(((!‘𝑁) / e) + (1 / 2))) = (𝑆𝑁) ↔ ((𝑆𝑁) ≤ (((!‘𝑁) / e) + (1 / 2)) ∧ (((!‘𝑁) / e) + (1 / 2)) < ((𝑆𝑁) + 1))))
9175, 88, 90mpbir2and 956 . 2 (𝑁 ∈ ℕ → (⌊‘(((!‘𝑁) / e) + (1 / 2))) = (𝑆𝑁))
9291eqcomd 2627 1 (𝑁 ∈ ℕ → (𝑆𝑁) = (⌊‘(((!‘𝑁) / e) + (1 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  {cab 2607  wne 2790  wral 2907   class class class wbr 4615  cmpt 4675  1-1-ontowf1o 5848  cfv 5849  (class class class)co 6607  Fincfn 7902  cc 9881  cr 9882  0cc0 9883  1c1 9884   + caddc 9886   < clt 10021  cle 10022  cmin 10213   / cdiv 10631  cn 10967  2c2 11017  3c3 11018  0cn0 11239  cz 11324  cuz 11634  +crp 11779  ...cfz 12271  cfl 12534  !cfa 13003  #chash 13060  abscabs 13911  eceu 14721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961  ax-addf 9962  ax-mulf 9963
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-pm 7808  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-sup 8295  df-inf 8296  df-oi 8362  df-card 8712  df-cda 8937  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-n0 11240  df-xnn0 11311  df-z 11325  df-uz 11635  df-q 11736  df-rp 11780  df-ico 12126  df-fz 12272  df-fzo 12410  df-fl 12536  df-seq 12745  df-exp 12804  df-fac 13004  df-bc 13033  df-hash 13061  df-shft 13744  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-limsup 14139  df-clim 14156  df-rlim 14157  df-sum 14354  df-ef 14726  df-e 14727
This theorem is referenced by:  derangfmla  30901
  Copyright terms: Public domain W3C validator