MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdmdprd Structured version   Visualization version   GIF version

Theorem subgdmdprd 18479
Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
subgdprd.1 𝐻 = (𝐺s 𝐴)
Assertion
Ref Expression
subgdmdprd (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))

Proof of Theorem subgdmdprd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmdprd 18442 . . . 4 Rel dom DProd
21brrelex2i 5193 . . 3 (𝐻dom DProd 𝑆𝑆 ∈ V)
32a1i 11 . 2 (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆𝑆 ∈ V))
41brrelex2i 5193 . . . 4 (𝐺dom DProd 𝑆𝑆 ∈ V)
54adantr 480 . . 3 ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) → 𝑆 ∈ V)
65a1i 11 . 2 (𝐴 ∈ (SubGrp‘𝐺) → ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) → 𝑆 ∈ V))
7 ffvelrn 6397 . . . . . . . . . . . . . . . 16 ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ 𝑥 ∈ dom 𝑆) → (𝑆𝑥) ∈ (SubGrp‘𝐻))
87ad2ant2lr 799 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑥) ∈ (SubGrp‘𝐻))
9 eqid 2651 . . . . . . . . . . . . . . . 16 (Base‘𝐻) = (Base‘𝐻)
109subgss 17642 . . . . . . . . . . . . . . 15 ((𝑆𝑥) ∈ (SubGrp‘𝐻) → (𝑆𝑥) ⊆ (Base‘𝐻))
118, 10syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑥) ⊆ (Base‘𝐻))
12 subgdprd.1 . . . . . . . . . . . . . . . 16 𝐻 = (𝐺s 𝐴)
1312subgbas 17645 . . . . . . . . . . . . . . 15 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 = (Base‘𝐻))
1413ad2antrr 762 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝐴 = (Base‘𝐻))
1511, 14sseqtr4d 3675 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑥) ⊆ 𝐴)
1615biantrud 527 . . . . . . . . . . . 12 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ↔ ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ (𝑆𝑥) ⊆ 𝐴)))
17 simpll 805 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝐴 ∈ (SubGrp‘𝐺))
18 simplr 807 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝑆:dom 𝑆⟶(SubGrp‘𝐻))
19 eldifi 3765 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (dom 𝑆 ∖ {𝑥}) → 𝑦 ∈ dom 𝑆)
2019ad2antll 765 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → 𝑦 ∈ dom 𝑆)
2118, 20ffvelrnd 6400 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑦) ∈ (SubGrp‘𝐻))
229subgss 17642 . . . . . . . . . . . . . . . . 17 ((𝑆𝑦) ∈ (SubGrp‘𝐻) → (𝑆𝑦) ⊆ (Base‘𝐻))
2321, 22syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑦) ⊆ (Base‘𝐻))
2423, 14sseqtr4d 3675 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → (𝑆𝑦) ⊆ 𝐴)
25 eqid 2651 . . . . . . . . . . . . . . . 16 (Cntz‘𝐺) = (Cntz‘𝐺)
26 eqid 2651 . . . . . . . . . . . . . . . 16 (Cntz‘𝐻) = (Cntz‘𝐻)
2712, 25, 26resscntz 17810 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (SubGrp‘𝐺) ∧ (𝑆𝑦) ⊆ 𝐴) → ((Cntz‘𝐻)‘(𝑆𝑦)) = (((Cntz‘𝐺)‘(𝑆𝑦)) ∩ 𝐴))
2817, 24, 27syl2anc 694 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((Cntz‘𝐻)‘(𝑆𝑦)) = (((Cntz‘𝐺)‘(𝑆𝑦)) ∩ 𝐴))
2928sseq2d 3666 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ↔ (𝑆𝑥) ⊆ (((Cntz‘𝐺)‘(𝑆𝑦)) ∩ 𝐴)))
30 ssin 3868 . . . . . . . . . . . . 13 (((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ (𝑆𝑥) ⊆ 𝐴) ↔ (𝑆𝑥) ⊆ (((Cntz‘𝐺)‘(𝑆𝑦)) ∩ 𝐴))
3129, 30syl6bbr 278 . . . . . . . . . . . 12 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ↔ ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ (𝑆𝑥) ⊆ 𝐴)))
3216, 31bitr4d 271 . . . . . . . . . . 11 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ (𝑥 ∈ dom 𝑆𝑦 ∈ (dom 𝑆 ∖ {𝑥}))) → ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ↔ (𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦))))
3332anassrs 681 . . . . . . . . . 10 ((((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) ∧ 𝑦 ∈ (dom 𝑆 ∖ {𝑥})) → ((𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ↔ (𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦))))
3433ralbidva 3014 . . . . . . . . 9 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ↔ ∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦))))
35 subgrcl 17646 . . . . . . . . . . . . . . 15 (𝐴 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
3635ad2antrr 762 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐺 ∈ Grp)
37 eqid 2651 . . . . . . . . . . . . . . 15 (Base‘𝐺) = (Base‘𝐺)
3837subgacs 17676 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
39 acsmre 16360 . . . . . . . . . . . . . 14 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
4036, 38, 393syl 18 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
4112subggrp 17644 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
4241ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐻 ∈ Grp)
439subgacs 17676 . . . . . . . . . . . . . . 15 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
44 acsmre 16360 . . . . . . . . . . . . . . 15 ((SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
4542, 43, 443syl 18 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
46 eqid 2651 . . . . . . . . . . . . . 14 (mrCls‘(SubGrp‘𝐻)) = (mrCls‘(SubGrp‘𝐻))
47 imassrn 5512 . . . . . . . . . . . . . . . . 17 (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ran 𝑆
48 frn 6091 . . . . . . . . . . . . . . . . . 18 (𝑆:dom 𝑆⟶(SubGrp‘𝐻) → ran 𝑆 ⊆ (SubGrp‘𝐻))
4948ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ran 𝑆 ⊆ (SubGrp‘𝐻))
5047, 49syl5ss 3647 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (SubGrp‘𝐻))
51 mresspw 16299 . . . . . . . . . . . . . . . . 17 ((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻))
5245, 51syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻))
5350, 52sstrd 3646 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐻))
54 sspwuni 4643 . . . . . . . . . . . . . . 15 ((𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐻) ↔ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐻))
5553, 54sylib 208 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐻))
5645, 46, 55mrcssidd 16332 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
5746mrccl 16318 . . . . . . . . . . . . . . . 16 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐻)) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻))
5845, 55, 57syl2anc 694 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻))
5912subsubg 17664 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (SubGrp‘𝐺) → (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)))
6059ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)))
6158, 60mpbid 222 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴))
6261simpld 474 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
63 eqid 2651 . . . . . . . . . . . . . 14 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
6463mrcsscl 16327 . . . . . . . . . . . . 13 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∧ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
6540, 56, 62, 64syl3anc 1366 . . . . . . . . . . . 12 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
6613ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐴 = (Base‘𝐻))
6755, 66sseqtr4d 3675 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝐴)
6837subgss 17642 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺))
6968ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐴 ⊆ (Base‘𝐺))
7067, 69sstrd 3646 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐺))
7140, 63, 70mrcssidd 16332 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
7263mrccl 16318 . . . . . . . . . . . . . . 15 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
7340, 70, 72syl2anc 694 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
74 simpll 805 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → 𝐴 ∈ (SubGrp‘𝐺))
7563mrcsscl 16327 . . . . . . . . . . . . . . 15 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ 𝐴𝐴 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)
7640, 67, 74, 75syl3anc 1366 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)
7712subsubg 17664 . . . . . . . . . . . . . . 15 (𝐴 ∈ (SubGrp‘𝐺) → (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)))
7877ad2antrr 762 . . . . . . . . . . . . . 14 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ 𝐴)))
7973, 76, 78mpbir2and 977 . . . . . . . . . . . . 13 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻))
8046mrcsscl 16327 . . . . . . . . . . . . 13 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ (𝑆 “ (dom 𝑆 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∧ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ∈ (SubGrp‘𝐻)) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
8145, 71, 79, 80syl3anc 1366 . . . . . . . . . . . 12 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
8265, 81eqssd 3653 . . . . . . . . . . 11 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))) = ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥}))))
8382ineq2d 3847 . . . . . . . . . 10 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))))
84 eqid 2651 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
8512, 84subg0 17647 . . . . . . . . . . . 12 (𝐴 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
8685ad2antrr 762 . . . . . . . . . . 11 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (0g𝐺) = (0g𝐻))
8786sneqd 4222 . . . . . . . . . 10 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → {(0g𝐺)} = {(0g𝐻)})
8883, 87eqeq12d 2666 . . . . . . . . 9 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → (((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)} ↔ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))
8934, 88anbi12d 747 . . . . . . . 8 (((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) ∧ 𝑥 ∈ dom 𝑆) → ((∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}) ↔ (∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})))
9089ralbidva 3014 . . . . . . 7 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) → (∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}) ↔ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})))
9190pm5.32da 674 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
9212subsubg 17664 . . . . . . . . . . . . 13 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (SubGrp‘𝐻) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴)))
93 elin 3829 . . . . . . . . . . . . . 14 (𝑥 ∈ ((SubGrp‘𝐺) ∩ 𝒫 𝐴) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝒫 𝐴))
94 selpw 4198 . . . . . . . . . . . . . . 15 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
9594anbi2i 730 . . . . . . . . . . . . . 14 ((𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝒫 𝐴) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴))
9693, 95bitri 264 . . . . . . . . . . . . 13 (𝑥 ∈ ((SubGrp‘𝐺) ∩ 𝒫 𝐴) ↔ (𝑥 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴))
9792, 96syl6bbr 278 . . . . . . . . . . . 12 (𝐴 ∈ (SubGrp‘𝐺) → (𝑥 ∈ (SubGrp‘𝐻) ↔ 𝑥 ∈ ((SubGrp‘𝐺) ∩ 𝒫 𝐴)))
9897eqrdv 2649 . . . . . . . . . . 11 (𝐴 ∈ (SubGrp‘𝐺) → (SubGrp‘𝐻) = ((SubGrp‘𝐺) ∩ 𝒫 𝐴))
9998sseq2d 3666 . . . . . . . . . 10 (𝐴 ∈ (SubGrp‘𝐺) → (ran 𝑆 ⊆ (SubGrp‘𝐻) ↔ ran 𝑆 ⊆ ((SubGrp‘𝐺) ∩ 𝒫 𝐴)))
100 ssin 3868 . . . . . . . . . 10 ((ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ran 𝑆 ⊆ ((SubGrp‘𝐺) ∩ 𝒫 𝐴))
10199, 100syl6bbr 278 . . . . . . . . 9 (𝐴 ∈ (SubGrp‘𝐺) → (ran 𝑆 ⊆ (SubGrp‘𝐻) ↔ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
102101anbi2d 740 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐻)) ↔ (𝑆 Fn dom 𝑆 ∧ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴))))
103 df-f 5930 . . . . . . . 8 (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ↔ (𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐻)))
104 df-f 5930 . . . . . . . . . 10 (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ↔ (𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐺)))
105104anbi1i 731 . . . . . . . . 9 ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐺)) ∧ ran 𝑆 ⊆ 𝒫 𝐴))
106 anass 682 . . . . . . . . 9 (((𝑆 Fn dom 𝑆 ∧ ran 𝑆 ⊆ (SubGrp‘𝐺)) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ (𝑆 Fn dom 𝑆 ∧ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
107105, 106bitri 264 . . . . . . . 8 ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ (𝑆 Fn dom 𝑆 ∧ (ran 𝑆 ⊆ (SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
108102, 103, 1073bitr4g 303 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐺) → (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
109108anbi1d 741 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
11091, 109bitr3d 270 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
111110adantr 480 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → ((𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
112 dmexg 7139 . . . . . 6 (𝑆 ∈ V → dom 𝑆 ∈ V)
113112adantl 481 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → dom 𝑆 ∈ V)
114 eqidd 2652 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → dom 𝑆 = dom 𝑆)
11541adantr 480 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → 𝐻 ∈ Grp)
116 eqid 2651 . . . . . . . 8 (0g𝐻) = (0g𝐻)
11726, 116, 46dmdprd 18443 . . . . . . 7 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐻dom DProd 𝑆 ↔ (𝐻 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
118 3anass 1059 . . . . . . 7 ((𝐻 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})) ↔ (𝐻 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
119117, 118syl6bb 276 . . . . . 6 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐻dom DProd 𝑆 ↔ (𝐻 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)})))))
120119baibd 968 . . . . 5 (((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) ∧ 𝐻 ∈ Grp) → (𝐻dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
121113, 114, 115, 120syl21anc 1365 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → (𝐻dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐻) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐻)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐻))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐻)}))))
12235adantr 480 . . . . . . 7 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → 𝐺 ∈ Grp)
12325, 84, 63dmdprd 18443 . . . . . . . . 9 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
124 3anass 1059 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ↔ (𝐺 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
125123, 124syl6bb 276 . . . . . . . 8 ((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})))))
126125baibd 968 . . . . . . 7 (((dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆) ∧ 𝐺 ∈ Grp) → (𝐺dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
127113, 114, 122, 126syl21anc 1365 . . . . . 6 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → (𝐺dom DProd 𝑆 ↔ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
128127anbi1d 741 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
129 an32 856 . . . . 5 (((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)})))
130128, 129syl6bb 276 . . . 4 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → ((𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴) ↔ ((𝑆:dom 𝑆⟶(SubGrp‘𝐺) ∧ ran 𝑆 ⊆ 𝒫 𝐴) ∧ ∀𝑥 ∈ dom 𝑆(∀𝑦 ∈ (dom 𝑆 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (dom 𝑆 ∖ {𝑥})))) = {(0g𝐺)}))))
131111, 121, 1303bitr4d 300 . . 3 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ V) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
132131ex 449 . 2 (𝐴 ∈ (SubGrp‘𝐺) → (𝑆 ∈ V → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴))))
1333, 6, 132pm5.21ndd 368 1 (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  cdif 3604  cin 3606  wss 3607  𝒫 cpw 4191  {csn 4210   cuni 4468   class class class wbr 4685  dom cdm 5143  ran crn 5144  cima 5146   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  Basecbs 15904  s cress 15905  0gc0g 16147  Moorecmre 16289  mrClscmrc 16290  ACScacs 16292  Grpcgrp 17469  SubGrpcsubg 17635  Cntzccntz 17794   DProd cdprd 18438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-subg 17638  df-cntz 17796  df-dprd 18440
This theorem is referenced by:  subgdprd  18480  ablfaclem3  18532
  Copyright terms: Public domain W3C validator