MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subggrp Structured version   Visualization version   GIF version

Theorem subggrp 17518
Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subggrp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subggrp (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)

Proof of Theorem subggrp
StepHypRef Expression
1 subggrp.h . 2 𝐻 = (𝐺s 𝑆)
2 eqid 2621 . . . 4 (Base‘𝐺) = (Base‘𝐺)
32issubg 17515 . . 3 (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺s 𝑆) ∈ Grp))
43simp3bi 1076 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
51, 4syl5eqel 2702 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  wss 3555  cfv 5847  (class class class)co 6604  Basecbs 15781  s cress 15782  Grpcgrp 17343  SubGrpcsubg 17509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-subg 17512
This theorem is referenced by:  subg0  17521  subginv  17522  subg0cl  17523  subginvcl  17524  subgcl  17525  issubg2  17530  issubgrpd  17532  subsubg  17538  resghm  17597  resghm2b  17599  subgga  17654  gasubg  17656  odsubdvds  17907  pgp0  17932  subgpgp  17933  sylow2blem2  17957  slwhash  17960  fislw  17961  subglsm  18007  pj1ghm  18037  subgabl  18162  cycsubgcyg  18223  subgdmdprd  18354  subgdprd  18355  ablfacrplem  18385  pgpfaclem1  18401  pgpfaclem3  18403  ablfaclem3  18407  issubrg2  18721  islss3  18878  mplgrp  19369  zringcyg  19758  cnmsgngrp  19844  psgnghm  19845  scmatghm  20258  m2cpmrngiso  20482  subgtgp  21819  subgngp  22349  reefgim  24108  amgmlemALT  41849
  Copyright terms: Public domain W3C validator