MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgid Structured version   Visualization version   GIF version

Theorem subgid 17517
Description: A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypothesis
Ref Expression
issubg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
subgid (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))

Proof of Theorem subgid
StepHypRef Expression
1 id 22 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
2 ssid 3603 . . 3 𝐵𝐵
32a1i 11 . 2 (𝐺 ∈ Grp → 𝐵𝐵)
4 issubg.b . . . 4 𝐵 = (Base‘𝐺)
54ressid 15856 . . 3 (𝐺 ∈ Grp → (𝐺s 𝐵) = 𝐺)
65, 1eqeltrd 2698 . 2 (𝐺 ∈ Grp → (𝐺s 𝐵) ∈ Grp)
74issubg 17515 . 2 (𝐵 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝐵𝐵 ∧ (𝐺s 𝐵) ∈ Grp))
81, 3, 6, 7syl3anbrc 1244 1 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  wss 3555  cfv 5847  (class class class)co 6604  Basecbs 15781  s cress 15782  Grpcgrp 17343  SubGrpcsubg 17509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-ress 15788  df-subg 17512
This theorem is referenced by:  nsgid  17561  gaid2  17657  pgpfac1  18400  pgpfac  18404  ablfaclem2  18406  ablfac  18408
  Copyright terms: Public domain W3C validator