MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgngp Structured version   Visualization version   GIF version

Theorem subgngp 22640
Description: A normed group restricted to a subgroup is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
subgngp.h 𝐻 = (𝐺s 𝐴)
Assertion
Ref Expression
subgngp ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ NrmGrp)

Proof of Theorem subgngp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgngp.h . . . 4 𝐻 = (𝐺s 𝐴)
21subggrp 17798 . . 3 (𝐴 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
32adantl 473 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp)
4 ngpms 22605 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
5 ressms 22532 . . . 4 ((𝐺 ∈ MetSp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → (𝐺s 𝐴) ∈ MetSp)
64, 5sylan 489 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → (𝐺s 𝐴) ∈ MetSp)
71, 6syl5eqel 2843 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ MetSp)
8 simplr 809 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐴 ∈ (SubGrp‘𝐺))
9 simprl 811 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑥 ∈ (Base‘𝐻))
101subgbas 17799 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 = (Base‘𝐻))
1110ad2antlr 765 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐴 = (Base‘𝐻))
129, 11eleqtrrd 2842 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑥𝐴)
13 simprr 813 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑦 ∈ (Base‘𝐻))
1413, 11eleqtrrd 2842 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑦𝐴)
15 eqid 2760 . . . . . . 7 (-g𝐺) = (-g𝐺)
16 eqid 2760 . . . . . . 7 (-g𝐻) = (-g𝐻)
1715, 1, 16subgsub 17807 . . . . . 6 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴𝑦𝐴) → (𝑥(-g𝐺)𝑦) = (𝑥(-g𝐻)𝑦))
188, 12, 14, 17syl3anc 1477 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐺)𝑦) = (𝑥(-g𝐻)𝑦))
1918fveq2d 6356 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)) = ((norm‘𝐺)‘(𝑥(-g𝐻)𝑦)))
20 eqid 2760 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
211, 20ressds 16275 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐺) → (dist‘𝐺) = (dist‘𝐻))
2221ad2antlr 765 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (dist‘𝐺) = (dist‘𝐻))
2322oveqd 6830 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐺)𝑦) = (𝑥(dist‘𝐻)𝑦))
24 simpll 807 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐺 ∈ NrmGrp)
25 eqid 2760 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
2625subgss 17796 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺))
2726ad2antlr 765 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐴 ⊆ (Base‘𝐺))
2827, 12sseldd 3745 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑥 ∈ (Base‘𝐺))
2927, 14sseldd 3745 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑦 ∈ (Base‘𝐺))
30 eqid 2760 . . . . . . 7 (norm‘𝐺) = (norm‘𝐺)
3130, 25, 15, 20ngpds 22609 . . . . . 6 ((𝐺 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(dist‘𝐺)𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
3224, 28, 29, 31syl3anc 1477 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐺)𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
3323, 32eqtr3d 2796 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐻)𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
34 eqid 2760 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
3534, 16grpsubcl 17696 . . . . . . . 8 ((𝐻 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(-g𝐻)𝑦) ∈ (Base‘𝐻))
36353expb 1114 . . . . . . 7 ((𝐻 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐻)𝑦) ∈ (Base‘𝐻))
373, 36sylan 489 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐻)𝑦) ∈ (Base‘𝐻))
3837, 11eleqtrrd 2842 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐻)𝑦) ∈ 𝐴)
39 eqid 2760 . . . . . 6 (norm‘𝐻) = (norm‘𝐻)
401, 30, 39subgnm2 22639 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ (𝑥(-g𝐻)𝑦) ∈ 𝐴) → ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)) = ((norm‘𝐺)‘(𝑥(-g𝐻)𝑦)))
418, 38, 40syl2anc 696 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)) = ((norm‘𝐺)‘(𝑥(-g𝐻)𝑦)))
4219, 33, 413eqtr4d 2804 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐻)𝑦) = ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)))
4342ralrimivva 3109 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(dist‘𝐻)𝑦) = ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)))
44 eqid 2760 . . 3 (dist‘𝐻) = (dist‘𝐻)
4539, 16, 44, 34isngp3 22603 . 2 (𝐻 ∈ NrmGrp ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ MetSp ∧ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(dist‘𝐻)𝑦) = ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦))))
463, 7, 43, 45syl3anbrc 1429 1 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ NrmGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  wss 3715  cfv 6049  (class class class)co 6813  Basecbs 16059  s cress 16060  distcds 16152  Grpcgrp 17623  -gcsg 17625  SubGrpcsubg 17789  MetSpcmt 22324  normcnm 22582  NrmGrpcngp 22583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-tset 16162  df-ds 16166  df-rest 16285  df-topn 16286  df-0g 16304  df-topgen 16306  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-sbg 17628  df-subg 17792  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-xms 22326  df-ms 22327  df-nm 22588  df-ngp 22589
This theorem is referenced by:  subrgnrg  22678  lssnlm  22706
  Copyright terms: Public domain W3C validator