Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submateq Structured version   Visualization version   GIF version

Theorem submateq 30184
 Description: Sufficient condition for two submatrices to be equal. (Contributed by Thierry Arnoux, 25-Aug-2020.)
Hypotheses
Ref Expression
submateq.a 𝐴 = ((1...𝑁) Mat 𝑅)
submateq.b 𝐵 = (Base‘𝐴)
submateq.n (𝜑𝑁 ∈ ℕ)
submateq.i (𝜑𝐼 ∈ (1...𝑁))
submateq.j (𝜑𝐽 ∈ (1...𝑁))
submateq.e (𝜑𝐸𝐵)
submateq.f (𝜑𝐹𝐵)
submateq.1 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗))
Assertion
Ref Expression
submateq (𝜑 → (𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽))
Distinct variable groups:   𝑖,𝐸,𝑗   𝑖,𝐹,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑁,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑅(𝑖,𝑗)

Proof of Theorem submateq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 811 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑥 ∈ (1...(𝑁 − 1)))
2 submateq.n . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
32ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝑥) → 𝑁 ∈ ℕ)
4 submateq.i . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (1...𝑁))
54ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝑥) → 𝐼 ∈ (1...𝑁))
6 simplr 809 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝑥) → 𝑥 ∈ (1...(𝑁 − 1)))
7 simpr 479 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝑥) → 𝐼𝑥)
83, 5, 6, 7submateqlem1 30182 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝑥) → (𝑥 ∈ (𝐼...𝑁) ∧ (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼})))
98simprd 482 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝑥) → (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}))
101, 9syldanl 737 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) → (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}))
1110adantr 472 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}))
12 simprr 813 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑦 ∈ (1...(𝑁 − 1)))
132ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽𝑦) → 𝑁 ∈ ℕ)
14 submateq.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (1...𝑁))
1514ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽𝑦) → 𝐽 ∈ (1...𝑁))
16 simplr 809 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽𝑦) → 𝑦 ∈ (1...(𝑁 − 1)))
17 simpr 479 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽𝑦) → 𝐽𝑦)
1813, 15, 16, 17submateqlem1 30182 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽𝑦) → (𝑦 ∈ (𝐽...𝑁) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})))
1918simprd 482 . . . . . . . . . 10 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽𝑦) → (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))
2012, 19syldanl 737 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐽𝑦) → (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))
2120adantlr 753 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))
2211, 21jca 555 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → ((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})))
23 ovexd 6843 . . . . . . . . 9 (𝜑 → (𝑥 + 1) ∈ V)
24 ovexd 6843 . . . . . . . . 9 (𝜑 → (𝑦 + 1) ∈ V)
25 simpl 474 . . . . . . . . . . . 12 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → 𝑖 = (𝑥 + 1))
2625eleq1d 2824 . . . . . . . . . . 11 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼})))
27 simpr 479 . . . . . . . . . . . 12 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → 𝑗 = (𝑦 + 1))
2827eleq1d 2824 . . . . . . . . . . 11 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → (𝑗 ∈ ((1...𝑁) ∖ {𝐽}) ↔ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})))
2926, 28anbi12d 749 . . . . . . . . . 10 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → ((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) ↔ ((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))))
30 oveq12 6822 . . . . . . . . . . 11 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → (𝑖𝐸𝑗) = ((𝑥 + 1)𝐸(𝑦 + 1)))
31 oveq12 6822 . . . . . . . . . . 11 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → (𝑖𝐹𝑗) = ((𝑥 + 1)𝐹(𝑦 + 1)))
3230, 31eqeq12d 2775 . . . . . . . . . 10 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → ((𝑖𝐸𝑗) = (𝑖𝐹𝑗) ↔ ((𝑥 + 1)𝐸(𝑦 + 1)) = ((𝑥 + 1)𝐹(𝑦 + 1))))
3329, 32imbi12d 333 . . . . . . . . 9 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = (𝑦 + 1)) → (((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ↔ (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸(𝑦 + 1)) = ((𝑥 + 1)𝐹(𝑦 + 1)))))
34 submateq.1 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗))
35343expib 1117 . . . . . . . . 9 (𝜑 → ((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)))
3623, 24, 33, 35vtocl2d 29623 . . . . . . . 8 (𝜑 → (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸(𝑦 + 1)) = ((𝑥 + 1)𝐹(𝑦 + 1))))
3736ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸(𝑦 + 1)) = ((𝑥 + 1)𝐹(𝑦 + 1))))
3822, 37mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → ((𝑥 + 1)𝐸(𝑦 + 1)) = ((𝑥 + 1)𝐹(𝑦 + 1)))
39 eqid 2760 . . . . . . 7 (𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐸)𝐽)
402ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → 𝑁 ∈ ℕ)
414ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → 𝐼 ∈ (1...𝑁))
4214ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → 𝐽 ∈ (1...𝑁))
43 submateq.e . . . . . . . . 9 (𝜑𝐸𝐵)
44 submateq.a . . . . . . . . . 10 𝐴 = ((1...𝑁) Mat 𝑅)
45 eqid 2760 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
46 submateq.b . . . . . . . . . 10 𝐵 = (Base‘𝐴)
4744, 45, 46matbas2i 20430 . . . . . . . . 9 (𝐸𝐵𝐸 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
4843, 47syl 17 . . . . . . . 8 (𝜑𝐸 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
4948ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → 𝐸 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
508simpld 477 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝐼𝑥) → 𝑥 ∈ (𝐼...𝑁))
511, 50syldanl 737 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) → 𝑥 ∈ (𝐼...𝑁))
5251adantr 472 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → 𝑥 ∈ (𝐼...𝑁))
5318simpld 477 . . . . . . . . 9 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝐽𝑦) → 𝑦 ∈ (𝐽...𝑁))
5412, 53syldanl 737 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐽𝑦) → 𝑦 ∈ (𝐽...𝑁))
5554adantlr 753 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → 𝑦 ∈ (𝐽...𝑁))
5639, 40, 40, 41, 42, 49, 52, 55smatbr 30176 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = ((𝑥 + 1)𝐸(𝑦 + 1)))
57 eqid 2760 . . . . . . 7 (𝐼(subMat1‘𝐹)𝐽) = (𝐼(subMat1‘𝐹)𝐽)
58 submateq.f . . . . . . . . 9 (𝜑𝐹𝐵)
5944, 45, 46matbas2i 20430 . . . . . . . . 9 (𝐹𝐵𝐹 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
6058, 59syl 17 . . . . . . . 8 (𝜑𝐹 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
6160ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → 𝐹 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
6257, 40, 40, 41, 42, 61, 52, 55smatbr 30176 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦) = ((𝑥 + 1)𝐹(𝑦 + 1)))
6338, 56, 623eqtr4d 2804 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝐽𝑦) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))
6410adantr 472 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}))
652ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝑁 ∈ ℕ)
6614ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝐽 ∈ (1...𝑁))
67 simplr 809 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝑦 ∈ (1...(𝑁 − 1)))
68 simpr 479 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝑦 < 𝐽)
6965, 66, 67, 68submateqlem2 30183 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → (𝑦 ∈ (1..^𝐽) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})))
7069simprd 482 . . . . . . . . . 10 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))
7112, 70syldanl 737 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑦 < 𝐽) → 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))
7271adantlr 753 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))
7364, 72jca 555 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → ((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})))
74 vex 3343 . . . . . . . . . 10 𝑦 ∈ V
7574a1i 11 . . . . . . . . 9 (𝜑𝑦 ∈ V)
76 simpl 474 . . . . . . . . . . . 12 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → 𝑖 = (𝑥 + 1))
7776eleq1d 2824 . . . . . . . . . . 11 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ (𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼})))
78 simpr 479 . . . . . . . . . . . 12 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → 𝑗 = 𝑦)
79 eqidd 2761 . . . . . . . . . . . 12 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → ((1...𝑁) ∖ {𝐽}) = ((1...𝑁) ∖ {𝐽}))
8078, 79eleq12d 2833 . . . . . . . . . . 11 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → (𝑗 ∈ ((1...𝑁) ∖ {𝐽}) ↔ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})))
8177, 80anbi12d 749 . . . . . . . . . 10 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → ((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) ↔ ((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))))
82 oveq12 6822 . . . . . . . . . . 11 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → (𝑖𝐸𝑗) = ((𝑥 + 1)𝐸𝑦))
83 oveq12 6822 . . . . . . . . . . 11 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → (𝑖𝐹𝑗) = ((𝑥 + 1)𝐹𝑦))
8482, 83eqeq12d 2775 . . . . . . . . . 10 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → ((𝑖𝐸𝑗) = (𝑖𝐹𝑗) ↔ ((𝑥 + 1)𝐸𝑦) = ((𝑥 + 1)𝐹𝑦)))
8581, 84imbi12d 333 . . . . . . . . 9 ((𝑖 = (𝑥 + 1) ∧ 𝑗 = 𝑦) → (((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ↔ (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸𝑦) = ((𝑥 + 1)𝐹𝑦))))
8623, 75, 85, 35vtocl2d 29623 . . . . . . . 8 (𝜑 → (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸𝑦) = ((𝑥 + 1)𝐹𝑦)))
8786ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → (((𝑥 + 1) ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → ((𝑥 + 1)𝐸𝑦) = ((𝑥 + 1)𝐹𝑦)))
8873, 87mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → ((𝑥 + 1)𝐸𝑦) = ((𝑥 + 1)𝐹𝑦))
892ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → 𝑁 ∈ ℕ)
904ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → 𝐼 ∈ (1...𝑁))
9114ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → 𝐽 ∈ (1...𝑁))
9248ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → 𝐸 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
9351adantr 472 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → 𝑥 ∈ (𝐼...𝑁))
9469simpld 477 . . . . . . . . 9 (((𝜑𝑦 ∈ (1...(𝑁 − 1))) ∧ 𝑦 < 𝐽) → 𝑦 ∈ (1..^𝐽))
9512, 94syldanl 737 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑦 < 𝐽) → 𝑦 ∈ (1..^𝐽))
9695adantlr 753 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → 𝑦 ∈ (1..^𝐽))
9739, 89, 89, 90, 91, 92, 93, 96smattr 30174 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = ((𝑥 + 1)𝐸𝑦))
9860ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → 𝐹 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
9957, 89, 89, 90, 91, 98, 93, 96smattr 30174 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦) = ((𝑥 + 1)𝐹𝑦))
10088, 97, 993eqtr4d 2804 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))
101 fz1ssnn 12565 . . . . . . . . . 10 (1...𝑁) ⊆ ℕ
102101, 14sseldi 3742 . . . . . . . . 9 (𝜑𝐽 ∈ ℕ)
103102nnred 11227 . . . . . . . 8 (𝜑𝐽 ∈ ℝ)
104103adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝐽 ∈ ℝ)
105 fz1ssnn 12565 . . . . . . . . 9 (1...(𝑁 − 1)) ⊆ ℕ
106105, 12sseldi 3742 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑦 ∈ ℕ)
107106nnred 11227 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑦 ∈ ℝ)
108 lelttric 10336 . . . . . . 7 ((𝐽 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐽𝑦𝑦 < 𝐽))
109104, 107, 108syl2anc 696 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → (𝐽𝑦𝑦 < 𝐽))
110109adantr 472 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) → (𝐽𝑦𝑦 < 𝐽))
11163, 100, 110mpjaodan 862 . . . 4 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝐼𝑥) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))
1122ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝑁 ∈ ℕ)
1134ad2antrr 764 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝐼 ∈ (1...𝑁))
114 simplr 809 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1...(𝑁 − 1)))
115 simpr 479 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝑥 < 𝐼)
116112, 113, 114, 115submateqlem2 30183 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → (𝑥 ∈ (1..^𝐼) ∧ 𝑥 ∈ ((1...𝑁) ∖ {𝐼})))
117116simprd 482 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝑥 ∈ ((1...𝑁) ∖ {𝐼}))
1181, 117syldanl 737 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) → 𝑥 ∈ ((1...𝑁) ∖ {𝐼}))
119118adantr 472 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → 𝑥 ∈ ((1...𝑁) ∖ {𝐼}))
12020adantlr 753 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))
121119, 120jca 555 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → (𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})))
122 vex 3343 . . . . . . . . . 10 𝑥 ∈ V
123122a1i 11 . . . . . . . . 9 (𝜑𝑥 ∈ V)
124 simpl 474 . . . . . . . . . . . 12 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → 𝑖 = 𝑥)
125124eleq1d 2824 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ 𝑥 ∈ ((1...𝑁) ∖ {𝐼})))
126 simpr 479 . . . . . . . . . . . 12 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → 𝑗 = (𝑦 + 1))
127126eleq1d 2824 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → (𝑗 ∈ ((1...𝑁) ∖ {𝐽}) ↔ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})))
128125, 127anbi12d 749 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → ((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) ↔ (𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽}))))
129 oveq12 6822 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → (𝑖𝐸𝑗) = (𝑥𝐸(𝑦 + 1)))
130 oveq12 6822 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → (𝑖𝐹𝑗) = (𝑥𝐹(𝑦 + 1)))
131129, 130eqeq12d 2775 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → ((𝑖𝐸𝑗) = (𝑖𝐹𝑗) ↔ (𝑥𝐸(𝑦 + 1)) = (𝑥𝐹(𝑦 + 1))))
132128, 131imbi12d 333 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = (𝑦 + 1)) → (((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ↔ ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸(𝑦 + 1)) = (𝑥𝐹(𝑦 + 1)))))
133123, 24, 132, 35vtocl2d 29623 . . . . . . . 8 (𝜑 → ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸(𝑦 + 1)) = (𝑥𝐹(𝑦 + 1))))
134133ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ (𝑦 + 1) ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸(𝑦 + 1)) = (𝑥𝐹(𝑦 + 1))))
135121, 134mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → (𝑥𝐸(𝑦 + 1)) = (𝑥𝐹(𝑦 + 1)))
1362ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → 𝑁 ∈ ℕ)
1374ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → 𝐼 ∈ (1...𝑁))
13814ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → 𝐽 ∈ (1...𝑁))
13948ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → 𝐸 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
140116simpld 477 . . . . . . . . 9 (((𝜑𝑥 ∈ (1...(𝑁 − 1))) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1..^𝐼))
1411, 140syldanl 737 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) → 𝑥 ∈ (1..^𝐼))
142141adantr 472 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → 𝑥 ∈ (1..^𝐼))
14354adantlr 753 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → 𝑦 ∈ (𝐽...𝑁))
14439, 136, 136, 137, 138, 139, 142, 143smatbl 30175 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥𝐸(𝑦 + 1)))
14560ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → 𝐹 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
14657, 136, 136, 137, 138, 145, 142, 143smatbl 30175 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦) = (𝑥𝐹(𝑦 + 1)))
147135, 144, 1463eqtr4d 2804 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝐽𝑦) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))
148118adantr 472 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝑥 ∈ ((1...𝑁) ∖ {𝐼}))
14971adantlr 753 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))
150148, 149jca 555 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → (𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})))
151 simpl 474 . . . . . . . . . . . 12 ((𝑖 = 𝑥𝑗 = 𝑦) → 𝑖 = 𝑥)
152151eleq1d 2824 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ 𝑥 ∈ ((1...𝑁) ∖ {𝐼})))
153 simpr 479 . . . . . . . . . . . 12 ((𝑖 = 𝑥𝑗 = 𝑦) → 𝑗 = 𝑦)
154153eleq1d 2824 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑗 ∈ ((1...𝑁) ∖ {𝐽}) ↔ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})))
155152, 154anbi12d 749 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → ((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) ↔ (𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽}))))
156 oveq12 6822 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖𝐸𝑗) = (𝑥𝐸𝑦))
157 oveq12 6822 . . . . . . . . . . 11 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖𝐹𝑗) = (𝑥𝐹𝑦))
158156, 157eqeq12d 2775 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → ((𝑖𝐸𝑗) = (𝑖𝐹𝑗) ↔ (𝑥𝐸𝑦) = (𝑥𝐹𝑦)))
159155, 158imbi12d 333 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → (((𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ↔ ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸𝑦) = (𝑥𝐹𝑦))))
160123, 75, 159, 35vtocl2d 29623 . . . . . . . 8 (𝜑 → ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸𝑦) = (𝑥𝐹𝑦)))
161160ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → ((𝑥 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑦 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑥𝐸𝑦) = (𝑥𝐹𝑦)))
162150, 161mpd 15 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → (𝑥𝐸𝑦) = (𝑥𝐹𝑦))
1632ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝑁 ∈ ℕ)
1644ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝐼 ∈ (1...𝑁))
16514ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝐽 ∈ (1...𝑁))
16648ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝐸 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
167141adantr 472 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝑥 ∈ (1..^𝐼))
16895adantlr 753 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝑦 ∈ (1..^𝐽))
16939, 163, 163, 164, 165, 166, 167, 168smattl 30173 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥𝐸𝑦))
17060ad3antrrr 768 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → 𝐹 ∈ ((Base‘𝑅) ↑𝑚 ((1...𝑁) × (1...𝑁))))
17157, 163, 163, 164, 165, 170, 167, 168smattl 30173 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦) = (𝑥𝐹𝑦))
172162, 169, 1713eqtr4d 2804 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) ∧ 𝑦 < 𝐽) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))
173109adantr 472 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) → (𝐽𝑦𝑦 < 𝐽))
174147, 172, 173mpjaodan 862 . . . 4 (((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) ∧ 𝑥 < 𝐼) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))
175101, 4sseldi 3742 . . . . . . 7 (𝜑𝐼 ∈ ℕ)
176175nnred 11227 . . . . . 6 (𝜑𝐼 ∈ ℝ)
177176adantr 472 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝐼 ∈ ℝ)
178105, 1sseldi 3742 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑥 ∈ ℕ)
179178nnred 11227 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → 𝑥 ∈ ℝ)
180 lelttric 10336 . . . . 5 ((𝐼 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐼𝑥𝑥 < 𝐼))
181177, 179, 180syl2anc 696 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → (𝐼𝑥𝑥 < 𝐼))
182111, 174, 181mpjaodan 862 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...(𝑁 − 1)) ∧ 𝑦 ∈ (1...(𝑁 − 1)))) → (𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))
183182ralrimivva 3109 . 2 (𝜑 → ∀𝑥 ∈ (1...(𝑁 − 1))∀𝑦 ∈ (1...(𝑁 − 1))(𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦))
184 eqid 2760 . . . 4 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
18544, 46, 184, 39, 2, 4, 14, 43smatcl 30177 . . 3 (𝜑 → (𝐼(subMat1‘𝐸)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
18644, 46, 184, 57, 2, 4, 14, 58smatcl 30177 . . 3 (𝜑 → (𝐼(subMat1‘𝐹)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
187 eqid 2760 . . . 4 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
188187, 184eqmat 20432 . . 3 (((𝐼(subMat1‘𝐸)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)) ∧ (𝐼(subMat1‘𝐹)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) → ((𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽) ↔ ∀𝑥 ∈ (1...(𝑁 − 1))∀𝑦 ∈ (1...(𝑁 − 1))(𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦)))
189185, 186, 188syl2anc 696 . 2 (𝜑 → ((𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽) ↔ ∀𝑥 ∈ (1...(𝑁 − 1))∀𝑦 ∈ (1...(𝑁 − 1))(𝑥(𝐼(subMat1‘𝐸)𝐽)𝑦) = (𝑥(𝐼(subMat1‘𝐹)𝐽)𝑦)))
190183, 189mpbird 247 1 (𝜑 → (𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050  Vcvv 3340   ∖ cdif 3712  {csn 4321   class class class wbr 4804   × cxp 5264  ‘cfv 6049  (class class class)co 6813   ↑𝑚 cmap 8023  ℝcr 10127  1c1 10129   + caddc 10131   < clt 10266   ≤ cle 10267   − cmin 10458  ℕcn 11212  ...cfz 12519  ..^cfzo 12659  Basecbs 16059   Mat cmat 20415  subMat1csmat 30168 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-fz 12520  df-fzo 12660  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-hom 16168  df-cco 16169  df-0g 16304  df-prds 16310  df-pws 16312  df-sra 19374  df-rgmod 19375  df-dsmm 20278  df-frlm 20293  df-mat 20416  df-smat 30169 This theorem is referenced by:  submatminr1  30185
 Copyright terms: Public domain W3C validator