Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submateqlem1 Structured version   Visualization version   GIF version

Theorem submateqlem1 31074
Description: Lemma for submateq 31076. (Contributed by Thierry Arnoux, 25-Aug-2020.)
Hypotheses
Ref Expression
submateqlem1.n (𝜑𝑁 ∈ ℕ)
submateqlem1.k (𝜑𝐾 ∈ (1...𝑁))
submateqlem1.m (𝜑𝑀 ∈ (1...(𝑁 − 1)))
submateqlem1.1 (𝜑𝐾𝑀)
Assertion
Ref Expression
submateqlem1 (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})))

Proof of Theorem submateqlem1
StepHypRef Expression
1 submateqlem1.1 . . . 4 (𝜑𝐾𝑀)
2 fz1ssnn 12941 . . . . . . 7 (1...(𝑁 − 1)) ⊆ ℕ
3 submateqlem1.m . . . . . . 7 (𝜑𝑀 ∈ (1...(𝑁 − 1)))
42, 3sseldi 3967 . . . . . 6 (𝜑𝑀 ∈ ℕ)
54nnred 11655 . . . . 5 (𝜑𝑀 ∈ ℝ)
6 submateqlem1.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
76nnred 11655 . . . . . 6 (𝜑𝑁 ∈ ℝ)
8 1red 10644 . . . . . 6 (𝜑 → 1 ∈ ℝ)
97, 8resubcld 11070 . . . . 5 (𝜑 → (𝑁 − 1) ∈ ℝ)
10 elfzle2 12914 . . . . . 6 (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ≤ (𝑁 − 1))
113, 10syl 17 . . . . 5 (𝜑𝑀 ≤ (𝑁 − 1))
127lem1d 11575 . . . . 5 (𝜑 → (𝑁 − 1) ≤ 𝑁)
135, 9, 7, 11, 12letrd 10799 . . . 4 (𝜑𝑀𝑁)
141, 13jca 514 . . 3 (𝜑 → (𝐾𝑀𝑀𝑁))
154nnzd 12089 . . . 4 (𝜑𝑀 ∈ ℤ)
16 fz1ssnn 12941 . . . . . 6 (1...𝑁) ⊆ ℕ
17 submateqlem1.k . . . . . 6 (𝜑𝐾 ∈ (1...𝑁))
1816, 17sseldi 3967 . . . . 5 (𝜑𝐾 ∈ ℕ)
1918nnzd 12089 . . . 4 (𝜑𝐾 ∈ ℤ)
206nnzd 12089 . . . 4 (𝜑𝑁 ∈ ℤ)
21 elfz 12901 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (𝐾...𝑁) ↔ (𝐾𝑀𝑀𝑁)))
2215, 19, 20, 21syl3anc 1367 . . 3 (𝜑 → (𝑀 ∈ (𝐾...𝑁) ↔ (𝐾𝑀𝑀𝑁)))
2314, 22mpbird 259 . 2 (𝜑𝑀 ∈ (𝐾...𝑁))
244nnnn0d 11958 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
2524nn0ge0d 11961 . . . . . 6 (𝜑 → 0 ≤ 𝑀)
26 1re 10643 . . . . . . 7 1 ∈ ℝ
27 addge02 11153 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1)))
2826, 5, 27sylancr 589 . . . . . 6 (𝜑 → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1)))
2925, 28mpbid 234 . . . . 5 (𝜑 → 1 ≤ (𝑀 + 1))
306nnnn0d 11958 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
31 nn0ltlem1 12045 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
3224, 30, 31syl2anc 586 . . . . . . 7 (𝜑 → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
3311, 32mpbird 259 . . . . . 6 (𝜑𝑀 < 𝑁)
34 nnltp1le 12041 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
354, 6, 34syl2anc 586 . . . . . 6 (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
3633, 35mpbid 234 . . . . 5 (𝜑 → (𝑀 + 1) ≤ 𝑁)
3729, 36jca 514 . . . 4 (𝜑 → (1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁))
3815peano2zd 12093 . . . . 5 (𝜑 → (𝑀 + 1) ∈ ℤ)
39 1zzd 12016 . . . . 5 (𝜑 → 1 ∈ ℤ)
40 elfz 12901 . . . . 5 (((𝑀 + 1) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)))
4138, 39, 20, 40syl3anc 1367 . . . 4 (𝜑 → ((𝑀 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)))
4237, 41mpbird 259 . . 3 (𝜑 → (𝑀 + 1) ∈ (1...𝑁))
4318nnred 11655 . . . . . 6 (𝜑𝐾 ∈ ℝ)
44 nnleltp1 12040 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐾𝑀𝐾 < (𝑀 + 1)))
4518, 4, 44syl2anc 586 . . . . . . 7 (𝜑 → (𝐾𝑀𝐾 < (𝑀 + 1)))
461, 45mpbid 234 . . . . . 6 (𝜑𝐾 < (𝑀 + 1))
4743, 46ltned 10778 . . . . 5 (𝜑𝐾 ≠ (𝑀 + 1))
4847necomd 3073 . . . 4 (𝜑 → (𝑀 + 1) ≠ 𝐾)
49 nelsn 4607 . . . 4 ((𝑀 + 1) ≠ 𝐾 → ¬ (𝑀 + 1) ∈ {𝐾})
5048, 49syl 17 . . 3 (𝜑 → ¬ (𝑀 + 1) ∈ {𝐾})
5142, 50eldifd 3949 . 2 (𝜑 → (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))
5223, 51jca 514 1 (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wcel 2114  wne 3018  cdif 3935  {csn 4569   class class class wbr 5068  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   < clt 10677  cle 10678  cmin 10872  cn 11640  0cn0 11900  cz 11984  ...cfz 12895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896
This theorem is referenced by:  submateq  31076
  Copyright terms: Public domain W3C validator