Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submateqlem1 Structured version   Visualization version   GIF version

Theorem submateqlem1 30001
Description: Lemma for submateq 30003. (Contributed by Thierry Arnoux, 25-Aug-2020.)
Hypotheses
Ref Expression
submateqlem1.n (𝜑𝑁 ∈ ℕ)
submateqlem1.k (𝜑𝐾 ∈ (1...𝑁))
submateqlem1.m (𝜑𝑀 ∈ (1...(𝑁 − 1)))
submateqlem1.1 (𝜑𝐾𝑀)
Assertion
Ref Expression
submateqlem1 (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})))

Proof of Theorem submateqlem1
StepHypRef Expression
1 submateqlem1.1 . . . 4 (𝜑𝐾𝑀)
2 fz1ssnn 12410 . . . . . . 7 (1...(𝑁 − 1)) ⊆ ℕ
3 submateqlem1.m . . . . . . 7 (𝜑𝑀 ∈ (1...(𝑁 − 1)))
42, 3sseldi 3634 . . . . . 6 (𝜑𝑀 ∈ ℕ)
54nnred 11073 . . . . 5 (𝜑𝑀 ∈ ℝ)
6 submateqlem1.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
76nnred 11073 . . . . . 6 (𝜑𝑁 ∈ ℝ)
8 1red 10093 . . . . . 6 (𝜑 → 1 ∈ ℝ)
97, 8resubcld 10496 . . . . 5 (𝜑 → (𝑁 − 1) ∈ ℝ)
10 elfzle2 12383 . . . . . 6 (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ≤ (𝑁 − 1))
113, 10syl 17 . . . . 5 (𝜑𝑀 ≤ (𝑁 − 1))
127lem1d 10995 . . . . 5 (𝜑 → (𝑁 − 1) ≤ 𝑁)
135, 9, 7, 11, 12letrd 10232 . . . 4 (𝜑𝑀𝑁)
141, 13jca 553 . . 3 (𝜑 → (𝐾𝑀𝑀𝑁))
154nnzd 11519 . . . 4 (𝜑𝑀 ∈ ℤ)
16 fz1ssnn 12410 . . . . . 6 (1...𝑁) ⊆ ℕ
17 submateqlem1.k . . . . . 6 (𝜑𝐾 ∈ (1...𝑁))
1816, 17sseldi 3634 . . . . 5 (𝜑𝐾 ∈ ℕ)
1918nnzd 11519 . . . 4 (𝜑𝐾 ∈ ℤ)
206nnzd 11519 . . . 4 (𝜑𝑁 ∈ ℤ)
21 elfz 12370 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (𝐾...𝑁) ↔ (𝐾𝑀𝑀𝑁)))
2215, 19, 20, 21syl3anc 1366 . . 3 (𝜑 → (𝑀 ∈ (𝐾...𝑁) ↔ (𝐾𝑀𝑀𝑁)))
2314, 22mpbird 247 . 2 (𝜑𝑀 ∈ (𝐾...𝑁))
244nnnn0d 11389 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
2524nn0ge0d 11392 . . . . . 6 (𝜑 → 0 ≤ 𝑀)
26 1re 10077 . . . . . . 7 1 ∈ ℝ
27 addge02 10577 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1)))
2826, 5, 27sylancr 696 . . . . . 6 (𝜑 → (0 ≤ 𝑀 ↔ 1 ≤ (𝑀 + 1)))
2925, 28mpbid 222 . . . . 5 (𝜑 → 1 ≤ (𝑀 + 1))
306nnnn0d 11389 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
31 nn0ltlem1 11475 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
3224, 30, 31syl2anc 694 . . . . . . 7 (𝜑 → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
3311, 32mpbird 247 . . . . . 6 (𝜑𝑀 < 𝑁)
34 nnltp1le 11471 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
354, 6, 34syl2anc 694 . . . . . 6 (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
3633, 35mpbid 222 . . . . 5 (𝜑 → (𝑀 + 1) ≤ 𝑁)
3729, 36jca 553 . . . 4 (𝜑 → (1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁))
3815peano2zd 11523 . . . . 5 (𝜑 → (𝑀 + 1) ∈ ℤ)
39 1zzd 11446 . . . . 5 (𝜑 → 1 ∈ ℤ)
40 elfz 12370 . . . . 5 (((𝑀 + 1) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)))
4138, 39, 20, 40syl3anc 1366 . . . 4 (𝜑 → ((𝑀 + 1) ∈ (1...𝑁) ↔ (1 ≤ (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁)))
4237, 41mpbird 247 . . 3 (𝜑 → (𝑀 + 1) ∈ (1...𝑁))
4318nnred 11073 . . . . . 6 (𝜑𝐾 ∈ ℝ)
44 nnleltp1 11470 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝐾𝑀𝐾 < (𝑀 + 1)))
4518, 4, 44syl2anc 694 . . . . . . 7 (𝜑 → (𝐾𝑀𝐾 < (𝑀 + 1)))
461, 45mpbid 222 . . . . . 6 (𝜑𝐾 < (𝑀 + 1))
4743, 46ltned 10211 . . . . 5 (𝜑𝐾 ≠ (𝑀 + 1))
4847necomd 2878 . . . 4 (𝜑 → (𝑀 + 1) ≠ 𝐾)
49 nelsn 4245 . . . 4 ((𝑀 + 1) ≠ 𝐾 → ¬ (𝑀 + 1) ∈ {𝐾})
5048, 49syl 17 . . 3 (𝜑 → ¬ (𝑀 + 1) ∈ {𝐾})
5142, 50eldifd 3618 . 2 (𝜑 → (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))
5223, 51jca 553 1 (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wcel 2030  wne 2823  cdif 3604  {csn 4210   class class class wbr 4685  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cmin 10304  cn 11058  0cn0 11330  cz 11415  ...cfz 12364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365
This theorem is referenced by:  submateq  30003
  Copyright terms: Public domain W3C validator