Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submgmcl Structured version   Visualization version   GIF version

Theorem submgmcl 41582
Description: Submagmas are closed under the monoid operation. (Contributed by AV, 26-Feb-2020.)
Hypothesis
Ref Expression
submgmcl.p + = (+g𝑀)
Assertion
Ref Expression
submgmcl ((𝑆 ∈ (SubMgm‘𝑀) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)

Proof of Theorem submgmcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submgmrcl 41570 . . . . . . 7 (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm)
2 eqid 2605 . . . . . . . 8 (Base‘𝑀) = (Base‘𝑀)
3 submgmcl.p . . . . . . . 8 + = (+g𝑀)
42, 3issubmgm 41577 . . . . . . 7 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
51, 4syl 17 . . . . . 6 (𝑆 ∈ (SubMgm‘𝑀) → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
65ibi 254 . . . . 5 (𝑆 ∈ (SubMgm‘𝑀) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
76simprd 477 . . . 4 (𝑆 ∈ (SubMgm‘𝑀) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
8 ovrspc2v 6545 . . . 4 (((𝑋𝑆𝑌𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
97, 8sylan2 489 . . 3 (((𝑋𝑆𝑌𝑆) ∧ 𝑆 ∈ (SubMgm‘𝑀)) → (𝑋 + 𝑌) ∈ 𝑆)
109ancoms 467 . 2 ((𝑆 ∈ (SubMgm‘𝑀) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋 + 𝑌) ∈ 𝑆)
11103impb 1251 1 ((𝑆 ∈ (SubMgm‘𝑀) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1975  wral 2891  wss 3535  cfv 5786  (class class class)co 6523  Basecbs 15637  +gcplusg 15710  Mgmcmgm 17005  SubMgmcsubmgm 41566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-rab 2900  df-v 3170  df-sbc 3398  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fv 5794  df-ov 6526  df-submgm 41568
This theorem is referenced by:  resmgmhm  41586  mgmhmima  41590
  Copyright terms: Public domain W3C validator