MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submmulg Structured version   Visualization version   GIF version

Theorem submmulg 18209
Description: A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
submmulgcl.t = (.g𝐺)
submmulg.h 𝐻 = (𝐺s 𝑆)
submmulg.t · = (.g𝐻)
Assertion
Ref Expression
submmulg ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 𝑋) = (𝑁 · 𝑋))

Proof of Theorem submmulg
StepHypRef Expression
1 simpl1 1183 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑆 ∈ (SubMnd‘𝐺))
2 submmulg.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
3 eqid 2818 . . . . . . 7 (+g𝐺) = (+g𝐺)
42, 3ressplusg 16600 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → (+g𝐺) = (+g𝐻))
51, 4syl 17 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (+g𝐺) = (+g𝐻))
65seqeq2d 13364 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
76fveq1d 6665 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
8 simpr 485 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
9 eqid 2818 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
109submss 17962 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
11103ad2ant1 1125 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑆 ⊆ (Base‘𝐺))
12 simp3 1130 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑋𝑆)
1311, 12sseldd 3965 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑋 ∈ (Base‘𝐺))
1413adantr 481 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ (Base‘𝐺))
15 submmulgcl.t . . . . 5 = (.g𝐺)
16 eqid 2818 . . . . 5 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
179, 3, 15, 16mulgnn 18170 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
188, 14, 17syl2anc 584 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
192submbas 17967 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
20193ad2ant1 1125 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑆 = (Base‘𝐻))
2112, 20eleqtrd 2912 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑋 ∈ (Base‘𝐻))
2221adantr 481 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ (Base‘𝐻))
23 eqid 2818 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
24 eqid 2818 . . . . 5 (+g𝐻) = (+g𝐻)
25 submmulg.t . . . . 5 · = (.g𝐻)
26 eqid 2818 . . . . 5 seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
2723, 24, 25, 26mulgnn 18170 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁 · 𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
288, 22, 27syl2anc 584 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
297, 18, 283eqtr4d 2863 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 𝑋) = (𝑁 · 𝑋))
30 simpl1 1183 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑆 ∈ (SubMnd‘𝐺))
31 eqid 2818 . . . . . 6 (0g𝐺) = (0g𝐺)
322, 31subm0 17968 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) = (0g𝐻))
3330, 32syl 17 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0g𝐺) = (0g𝐻))
3413adantr 481 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺))
359, 31, 15mulg0 18169 . . . . 5 (𝑋 ∈ (Base‘𝐺) → (0 𝑋) = (0g𝐺))
3634, 35syl 17 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0 𝑋) = (0g𝐺))
3721adantr 481 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐻))
38 eqid 2818 . . . . . 6 (0g𝐻) = (0g𝐻)
3923, 38, 25mulg0 18169 . . . . 5 (𝑋 ∈ (Base‘𝐻) → (0 · 𝑋) = (0g𝐻))
4037, 39syl 17 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g𝐻))
4133, 36, 403eqtr4d 2863 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (0 𝑋) = (0 · 𝑋))
42 simpr 485 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 𝑁 = 0)
4342oveq1d 7160 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 𝑋) = (0 𝑋))
4442oveq1d 7160 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋))
4541, 43, 443eqtr4d 2863 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 𝑋) = (𝑁 · 𝑋))
46 simp2 1129 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → 𝑁 ∈ ℕ0)
47 elnn0 11887 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4846, 47sylib 219 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4929, 45, 48mpjaodan 952 1 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 𝑋) = (𝑁 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 841  w3a 1079   = wceq 1528  wcel 2105  wss 3933  {csn 4557   × cxp 5546  cfv 6348  (class class class)co 7145  0cc0 10525  1c1 10526  cn 11626  0cn0 11885  seqcseq 13357  Basecbs 16471  s cress 16472  +gcplusg 16553  0gc0g 16701  SubMndcsubmnd 17943  .gcmg 18162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13358  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163
This theorem is referenced by:  submod  18623  dchrfi  25758  dchrabs  25763  lgsqrlem1  25849  lgseisenlem4  25881  dchrisum0flblem1  26011  submarchi  30742  idomodle  39674  proot1ex  39679
  Copyright terms: Public domain W3C validator