Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submomnd Structured version   Visualization version   GIF version

Theorem submomnd 30713
Description: A submonoid of an ordered monoid is also ordered. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
submomnd ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (𝑀s 𝐴) ∈ oMnd)

Proof of Theorem submomnd
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . 2 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (𝑀s 𝐴) ∈ Mnd)
2 omndtos 30708 . . . 4 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
32adantr 483 . . 3 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → 𝑀 ∈ Toset)
4 reldmress 16552 . . . . . . . 8 Rel dom ↾s
54ovprc2 7198 . . . . . . 7 𝐴 ∈ V → (𝑀s 𝐴) = ∅)
65fveq2d 6676 . . . . . 6 𝐴 ∈ V → (Base‘(𝑀s 𝐴)) = (Base‘∅))
76adantl 484 . . . . 5 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑀s 𝐴)) = (Base‘∅))
8 base0 16538 . . . . 5 ∅ = (Base‘∅)
97, 8syl6eqr 2876 . . . 4 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑀s 𝐴)) = ∅)
10 eqid 2823 . . . . . . . 8 (Base‘(𝑀s 𝐴)) = (Base‘(𝑀s 𝐴))
11 eqid 2823 . . . . . . . 8 (0g‘(𝑀s 𝐴)) = (0g‘(𝑀s 𝐴))
1210, 11mndidcl 17928 . . . . . . 7 ((𝑀s 𝐴) ∈ Mnd → (0g‘(𝑀s 𝐴)) ∈ (Base‘(𝑀s 𝐴)))
1312ne0d 4303 . . . . . 6 ((𝑀s 𝐴) ∈ Mnd → (Base‘(𝑀s 𝐴)) ≠ ∅)
1413ad2antlr 725 . . . . 5 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ ¬ 𝐴 ∈ V) → (Base‘(𝑀s 𝐴)) ≠ ∅)
1514neneqd 3023 . . . 4 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ ¬ 𝐴 ∈ V) → ¬ (Base‘(𝑀s 𝐴)) = ∅)
169, 15condan 816 . . 3 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → 𝐴 ∈ V)
17 resstos 30649 . . 3 ((𝑀 ∈ Toset ∧ 𝐴 ∈ V) → (𝑀s 𝐴) ∈ Toset)
183, 16, 17syl2anc 586 . 2 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (𝑀s 𝐴) ∈ Toset)
19 simplll 773 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑀 ∈ oMnd)
20 eqid 2823 . . . . . . . . . . 11 (𝑀s 𝐴) = (𝑀s 𝐴)
21 eqid 2823 . . . . . . . . . . 11 (Base‘𝑀) = (Base‘𝑀)
2220, 21ressbas 16556 . . . . . . . . . 10 (𝐴 ∈ V → (𝐴 ∩ (Base‘𝑀)) = (Base‘(𝑀s 𝐴)))
23 inss2 4208 . . . . . . . . . 10 (𝐴 ∩ (Base‘𝑀)) ⊆ (Base‘𝑀)
2422, 23eqsstrrdi 4024 . . . . . . . . 9 (𝐴 ∈ V → (Base‘(𝑀s 𝐴)) ⊆ (Base‘𝑀))
2516, 24syl 17 . . . . . . . 8 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (Base‘(𝑀s 𝐴)) ⊆ (Base‘𝑀))
2625ad2antrr 724 . . . . . . 7 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → (Base‘(𝑀s 𝐴)) ⊆ (Base‘𝑀))
27 simplr1 1211 . . . . . . 7 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑎 ∈ (Base‘(𝑀s 𝐴)))
2826, 27sseldd 3970 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑎 ∈ (Base‘𝑀))
29 simplr2 1212 . . . . . . 7 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑏 ∈ (Base‘(𝑀s 𝐴)))
3026, 29sseldd 3970 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑏 ∈ (Base‘𝑀))
31 simplr3 1213 . . . . . . 7 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑐 ∈ (Base‘(𝑀s 𝐴)))
3226, 31sseldd 3970 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑐 ∈ (Base‘𝑀))
33 eqid 2823 . . . . . . . . . . 11 (le‘𝑀) = (le‘𝑀)
3420, 33ressle 16674 . . . . . . . . . 10 (𝐴 ∈ V → (le‘𝑀) = (le‘(𝑀s 𝐴)))
3516, 34syl 17 . . . . . . . . 9 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (le‘𝑀) = (le‘(𝑀s 𝐴)))
3635adantr 483 . . . . . . . 8 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (le‘𝑀) = (le‘(𝑀s 𝐴)))
3736breqd 5079 . . . . . . 7 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (𝑎(le‘𝑀)𝑏𝑎(le‘(𝑀s 𝐴))𝑏))
3837biimpar 480 . . . . . 6 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → 𝑎(le‘𝑀)𝑏)
39 eqid 2823 . . . . . . 7 (+g𝑀) = (+g𝑀)
4021, 33, 39omndadd 30709 . . . . . 6 ((𝑀 ∈ oMnd ∧ (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀) ∧ 𝑐 ∈ (Base‘𝑀)) ∧ 𝑎(le‘𝑀)𝑏) → (𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐))
4119, 28, 30, 32, 38, 40syl131anc 1379 . . . . 5 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → (𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐))
4216adantr 483 . . . . . . . . 9 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → 𝐴 ∈ V)
4320, 39ressplusg 16614 . . . . . . . . 9 (𝐴 ∈ V → (+g𝑀) = (+g‘(𝑀s 𝐴)))
4442, 43syl 17 . . . . . . . 8 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (+g𝑀) = (+g‘(𝑀s 𝐴)))
4544oveqd 7175 . . . . . . 7 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (𝑎(+g𝑀)𝑐) = (𝑎(+g‘(𝑀s 𝐴))𝑐))
4642, 34syl 17 . . . . . . 7 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (le‘𝑀) = (le‘(𝑀s 𝐴)))
4744oveqd 7175 . . . . . . 7 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (𝑏(+g𝑀)𝑐) = (𝑏(+g‘(𝑀s 𝐴))𝑐))
4845, 46, 47breq123d 5082 . . . . . 6 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → ((𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐) ↔ (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐)))
4948adantr 483 . . . . 5 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → ((𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐) ↔ (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐)))
5041, 49mpbid 234 . . . 4 ((((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) ∧ 𝑎(le‘(𝑀s 𝐴))𝑏) → (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐))
5150ex 415 . . 3 (((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) ∧ (𝑎 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑏 ∈ (Base‘(𝑀s 𝐴)) ∧ 𝑐 ∈ (Base‘(𝑀s 𝐴)))) → (𝑎(le‘(𝑀s 𝐴))𝑏 → (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐)))
5251ralrimivvva 3194 . 2 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → ∀𝑎 ∈ (Base‘(𝑀s 𝐴))∀𝑏 ∈ (Base‘(𝑀s 𝐴))∀𝑐 ∈ (Base‘(𝑀s 𝐴))(𝑎(le‘(𝑀s 𝐴))𝑏 → (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐)))
53 eqid 2823 . . 3 (+g‘(𝑀s 𝐴)) = (+g‘(𝑀s 𝐴))
54 eqid 2823 . . 3 (le‘(𝑀s 𝐴)) = (le‘(𝑀s 𝐴))
5510, 53, 54isomnd 30704 . 2 ((𝑀s 𝐴) ∈ oMnd ↔ ((𝑀s 𝐴) ∈ Mnd ∧ (𝑀s 𝐴) ∈ Toset ∧ ∀𝑎 ∈ (Base‘(𝑀s 𝐴))∀𝑏 ∈ (Base‘(𝑀s 𝐴))∀𝑐 ∈ (Base‘(𝑀s 𝐴))(𝑎(le‘(𝑀s 𝐴))𝑏 → (𝑎(+g‘(𝑀s 𝐴))𝑐)(le‘(𝑀s 𝐴))(𝑏(+g‘(𝑀s 𝐴))𝑐))))
561, 18, 52, 55syl3anbrc 1339 1 ((𝑀 ∈ oMnd ∧ (𝑀s 𝐴) ∈ Mnd) → (𝑀s 𝐴) ∈ oMnd)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  Vcvv 3496  cin 3937  wss 3938  c0 4293   class class class wbr 5068  cfv 6357  (class class class)co 7158  Basecbs 16485  s cress 16486  +gcplusg 16567  lecple 16574  0gc0g 16715  Tosetctos 17645  Mndcmnd 17913  oMndcomnd 30700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-dec 12102  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-ple 16587  df-0g 16717  df-poset 17558  df-toset 17646  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-omnd 30702
This theorem is referenced by:  suborng  30890  nn0omnd  30916
  Copyright terms: Public domain W3C validator