Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  subopnmbl Structured version   Visualization version   GIF version

Theorem subopnmbl 23295
 Description: Sets which are open in a measurable subspace are measurable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypothesis
Ref Expression
subopnmbl.1 𝐽 = ((topGen‘ran (,)) ↾t 𝐴)
Assertion
Ref Expression
subopnmbl ((𝐴 ∈ dom vol ∧ 𝐵𝐽) → 𝐵 ∈ dom vol)

Proof of Theorem subopnmbl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subopnmbl.1 . . . . 5 𝐽 = ((topGen‘ran (,)) ↾t 𝐴)
21eleq2i 2690 . . . 4 (𝐵𝐽𝐵 ∈ ((topGen‘ran (,)) ↾t 𝐴))
3 retop 22488 . . . . 5 (topGen‘ran (,)) ∈ Top
4 elrest 16020 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ∈ dom vol) → (𝐵 ∈ ((topGen‘ran (,)) ↾t 𝐴) ↔ ∃𝑥 ∈ (topGen‘ran (,))𝐵 = (𝑥𝐴)))
53, 4mpan 705 . . . 4 (𝐴 ∈ dom vol → (𝐵 ∈ ((topGen‘ran (,)) ↾t 𝐴) ↔ ∃𝑥 ∈ (topGen‘ran (,))𝐵 = (𝑥𝐴)))
62, 5syl5bb 272 . . 3 (𝐴 ∈ dom vol → (𝐵𝐽 ↔ ∃𝑥 ∈ (topGen‘ran (,))𝐵 = (𝑥𝐴)))
7 opnmbl 23293 . . . . . 6 (𝑥 ∈ (topGen‘ran (,)) → 𝑥 ∈ dom vol)
8 id 22 . . . . . 6 (𝐴 ∈ dom vol → 𝐴 ∈ dom vol)
9 inmbl 23233 . . . . . 6 ((𝑥 ∈ dom vol ∧ 𝐴 ∈ dom vol) → (𝑥𝐴) ∈ dom vol)
107, 8, 9syl2anr 495 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝑥 ∈ (topGen‘ran (,))) → (𝑥𝐴) ∈ dom vol)
11 eleq1a 2693 . . . . 5 ((𝑥𝐴) ∈ dom vol → (𝐵 = (𝑥𝐴) → 𝐵 ∈ dom vol))
1210, 11syl 17 . . . 4 ((𝐴 ∈ dom vol ∧ 𝑥 ∈ (topGen‘ran (,))) → (𝐵 = (𝑥𝐴) → 𝐵 ∈ dom vol))
1312rexlimdva 3025 . . 3 (𝐴 ∈ dom vol → (∃𝑥 ∈ (topGen‘ran (,))𝐵 = (𝑥𝐴) → 𝐵 ∈ dom vol))
146, 13sylbid 230 . 2 (𝐴 ∈ dom vol → (𝐵𝐽𝐵 ∈ dom vol))
1514imp 445 1 ((𝐴 ∈ dom vol ∧ 𝐵𝐽) → 𝐵 ∈ dom vol)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∃wrex 2908   ∩ cin 3558  dom cdm 5079  ran crn 5080  ‘cfv 5852  (class class class)co 6610  (,)cioo 12125   ↾t crest 16013  topGenctg 16030  Topctop 20630  volcvol 23155 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-omul 7517  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-acn 8720  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-n0 11245  df-z 11330  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-rlim 14162  df-sum 14359  df-rest 16015  df-topgen 16036  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-top 20631  df-topon 20648  df-bases 20674  df-cmp 21113  df-ovol 23156  df-vol 23157 This theorem is referenced by:  cnmbf  23349  cnambfre  33125
 Copyright terms: Public domain W3C validator