Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrg1 Structured version   Visualization version   GIF version

Theorem subrg1 18714
 Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
subrg1.1 𝑆 = (𝑅s 𝐴)
subrg1.2 1 = (1r𝑅)
Assertion
Ref Expression
subrg1 (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r𝑆))

Proof of Theorem subrg1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . . . 5 (1r𝑅) = (1r𝑅)
21subrg1cl 18712 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝐴)
3 subrg1.1 . . . . 5 𝑆 = (𝑅s 𝐴)
43subrgbas 18713 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
52, 4eleqtrd 2700 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ (Base‘𝑆))
6 eqid 2621 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
76subrgss 18705 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
84, 7eqsstr3d 3621 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
98sselda 3584 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
10 subrgrcl 18709 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
11 eqid 2621 . . . . . . . 8 (.r𝑅) = (.r𝑅)
126, 11, 1ringidmlem 18494 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r𝑅)(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)(1r𝑅)) = 𝑥))
1310, 12sylan 488 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r𝑅)(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)(1r𝑅)) = 𝑥))
143, 11ressmulr 15930 . . . . . . . . . 10 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1514oveqd 6624 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → ((1r𝑅)(.r𝑅)𝑥) = ((1r𝑅)(.r𝑆)𝑥))
1615eqeq1d 2623 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (((1r𝑅)(.r𝑅)𝑥) = 𝑥 ↔ ((1r𝑅)(.r𝑆)𝑥) = 𝑥))
1714oveqd 6624 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r𝑅)(1r𝑅)) = (𝑥(.r𝑆)(1r𝑅)))
1817eqeq1d 2623 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r𝑅)(1r𝑅)) = 𝑥 ↔ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
1916, 18anbi12d 746 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → ((((1r𝑅)(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)(1r𝑅)) = 𝑥) ↔ (((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥)))
2019biimpa 501 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (((1r𝑅)(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)(1r𝑅)) = 𝑥)) → (((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
2113, 20syldan 487 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
229, 21syldan 487 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑆)) → (((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
2322ralrimiva 2960 . . 3 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ (Base‘𝑆)(((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
243subrgring 18707 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
25 eqid 2621 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
26 eqid 2621 . . . . 5 (.r𝑆) = (.r𝑆)
27 eqid 2621 . . . . 5 (1r𝑆) = (1r𝑆)
2825, 26, 27isringid 18497 . . . 4 (𝑆 ∈ Ring → (((1r𝑅) ∈ (Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)(((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥)) ↔ (1r𝑆) = (1r𝑅)))
2924, 28syl 17 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (((1r𝑅) ∈ (Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)(((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥)) ↔ (1r𝑆) = (1r𝑅)))
305, 23, 29mpbi2and 955 . 2 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑆) = (1r𝑅))
31 subrg1.2 . 2 1 = (1r𝑅)
3230, 31syl6reqr 2674 1 (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ‘cfv 5849  (class class class)co 6607  Basecbs 15784   ↾s cress 15785  .rcmulr 15866  1rcur 18425  Ringcrg 18471  SubRingcsubrg 18700 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-0g 16026  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-subg 17515  df-mgp 18414  df-ur 18426  df-ring 18473  df-subrg 18702 This theorem is referenced by:  subrguss  18719  subrginv  18720  subrgunit  18722  subsubrg  18730  sralmod  19109  subrgnzr  19190  ressascl  19266  mpl1  19366  subrgmvr  19383  gzrngunitlem  19733  zring1  19751  re1r  19881  scmatsrng1  20251  scmatmhm  20262  clm1  22786  isclmp  22810  qrng1  25218  subrgchr  29591
 Copyright terms: Public domain W3C validator