MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgbas Structured version   Visualization version   GIF version

Theorem subrgbas 18713
Description: Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
subrgbas.b 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subrgbas (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))

Proof of Theorem subrgbas
StepHypRef Expression
1 subrgsubg 18710 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
2 subrgbas.b . . 3 𝑆 = (𝑅s 𝐴)
32subgbas 17522 . 2 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 = (Base‘𝑆))
41, 3syl 17 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  cfv 5849  (class class class)co 6607  Basecbs 15784  s cress 15785  SubGrpcsubg 17512  SubRingcsubrg 18700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-i2m1 9951  ax-1ne0 9952  ax-rrecex 9955  ax-cnre 9956
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-nn 10968  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-subg 17515  df-ring 18473  df-subrg 18702
This theorem is referenced by:  subrg1  18714  subrgmcl  18716  subrgdvds  18718  subrguss  18719  subrginv  18720  subrgdv  18721  subrgunit  18722  issubdrg  18729  subsubrg  18730  abvres  18763  sraassa  19247  resspsrbas  19337  resspsradd  19338  resspsrmul  19339  resspsrvsca  19340  subrgpsr  19341  subrgascl  19420  subrgasclcl  19421  qsssubdrg  19727  gzrngunitlem  19733  gzrngunit  19734  dmatcrng  20230  scmatcrng  20249  scmatstrbas  20254  sranlm  22401  isclmi  22790  plypf1  23879
  Copyright terms: Public domain W3C validator