Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subrgchr Structured version   Visualization version   GIF version

Theorem subrgchr 29576
 Description: If 𝐴 is a subring of 𝑅, then they have the same characteristic. (Contributed by Thierry Arnoux, 24-Feb-2018.)
Assertion
Ref Expression
subrgchr (𝐴 ∈ (SubRing‘𝑅) → (chr‘(𝑅s 𝐴)) = (chr‘𝑅))

Proof of Theorem subrgchr
StepHypRef Expression
1 subrgsubg 18707 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
2 eqid 2621 . . . . 5 (1r𝑅) = (1r𝑅)
32subrg1cl 18709 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝐴)
4 eqid 2621 . . . . 5 (𝑅s 𝐴) = (𝑅s 𝐴)
5 eqid 2621 . . . . 5 (od‘𝑅) = (od‘𝑅)
6 eqid 2621 . . . . 5 (od‘(𝑅s 𝐴)) = (od‘(𝑅s 𝐴))
74, 5, 6subgod 17906 . . . 4 ((𝐴 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝐴) → ((od‘𝑅)‘(1r𝑅)) = ((od‘(𝑅s 𝐴))‘(1r𝑅)))
81, 3, 7syl2anc 692 . . 3 (𝐴 ∈ (SubRing‘𝑅) → ((od‘𝑅)‘(1r𝑅)) = ((od‘(𝑅s 𝐴))‘(1r𝑅)))
94, 2subrg1 18711 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r‘(𝑅s 𝐴)))
109fveq2d 6152 . . 3 (𝐴 ∈ (SubRing‘𝑅) → ((od‘(𝑅s 𝐴))‘(1r𝑅)) = ((od‘(𝑅s 𝐴))‘(1r‘(𝑅s 𝐴))))
118, 10eqtr2d 2656 . 2 (𝐴 ∈ (SubRing‘𝑅) → ((od‘(𝑅s 𝐴))‘(1r‘(𝑅s 𝐴))) = ((od‘𝑅)‘(1r𝑅)))
12 eqid 2621 . . 3 (1r‘(𝑅s 𝐴)) = (1r‘(𝑅s 𝐴))
13 eqid 2621 . . 3 (chr‘(𝑅s 𝐴)) = (chr‘(𝑅s 𝐴))
146, 12, 13chrval 19792 . 2 ((od‘(𝑅s 𝐴))‘(1r‘(𝑅s 𝐴))) = (chr‘(𝑅s 𝐴))
15 eqid 2621 . . 3 (chr‘𝑅) = (chr‘𝑅)
165, 2, 15chrval 19792 . 2 ((od‘𝑅)‘(1r𝑅)) = (chr‘𝑅)
1711, 14, 163eqtr3g 2678 1 (𝐴 ∈ (SubRing‘𝑅) → (chr‘(𝑅s 𝐴)) = (chr‘𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1480   ∈ wcel 1987  ‘cfv 5847  (class class class)co 6604   ↾s cress 15782  SubGrpcsubg 17509  odcod 17865  1rcur 18422  SubRingcsubrg 18697  chrcchr 19769 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-seq 12742  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-grp 17346  df-minusg 17347  df-mulg 17462  df-subg 17512  df-od 17869  df-mgp 18411  df-ur 18423  df-ring 18470  df-subrg 18699  df-chr 19773 This theorem is referenced by:  cnrrext  29833
 Copyright terms: Public domain W3C validator