MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgmvr Structured version   Visualization version   GIF version

Theorem subrgmvr 19230
Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgmvr.v 𝑉 = (𝐼 mVar 𝑅)
subrgmvr.i (𝜑𝐼𝑊)
subrgmvr.r (𝜑𝑇 ∈ (SubRing‘𝑅))
subrgmvr.h 𝐻 = (𝑅s 𝑇)
Assertion
Ref Expression
subrgmvr (𝜑𝑉 = (𝐼 mVar 𝐻))

Proof of Theorem subrgmvr
Dummy variables 𝑥 𝑦 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgmvr.r . . . . . 6 (𝜑𝑇 ∈ (SubRing‘𝑅))
2 subrgmvr.h . . . . . . 7 𝐻 = (𝑅s 𝑇)
3 eqid 2609 . . . . . . 7 (1r𝑅) = (1r𝑅)
42, 3subrg1 18561 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝐻))
51, 4syl 17 . . . . 5 (𝜑 → (1r𝑅) = (1r𝐻))
6 eqid 2609 . . . . . . 7 (0g𝑅) = (0g𝑅)
72, 6subrg0 18558 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g𝐻))
81, 7syl 17 . . . . 5 (𝜑 → (0g𝑅) = (0g𝐻))
95, 8ifeq12d 4055 . . . 4 (𝜑 → if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)) = if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻)))
109mpteq2dv 4667 . . 3 (𝜑 → (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅))) = (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻))))
1110mpteq2dv 4667 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))) = (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻)))))
12 subrgmvr.v . . 3 𝑉 = (𝐼 mVar 𝑅)
13 eqid 2609 . . 3 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
14 subrgmvr.i . . 3 (𝜑𝐼𝑊)
15 subrgrcl 18556 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
161, 15syl 17 . . 3 (𝜑𝑅 ∈ Ring)
1712, 13, 6, 3, 14, 16mvrfval 19189 . 2 (𝜑𝑉 = (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝑅), (0g𝑅)))))
18 eqid 2609 . . 3 (𝐼 mVar 𝐻) = (𝐼 mVar 𝐻)
19 eqid 2609 . . 3 (0g𝐻) = (0g𝐻)
20 eqid 2609 . . 3 (1r𝐻) = (1r𝐻)
21 ovex 6554 . . . . 5 (𝑅s 𝑇) ∈ V
222, 21eqeltri 2683 . . . 4 𝐻 ∈ V
2322a1i 11 . . 3 (𝜑𝐻 ∈ V)
2418, 13, 19, 20, 14, 23mvrfval 19189 . 2 (𝜑 → (𝐼 mVar 𝐻) = (𝑥𝐼 ↦ (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = (𝑧𝐼 ↦ if(𝑧 = 𝑥, 1, 0)), (1r𝐻), (0g𝐻)))))
2511, 17, 243eqtr4d 2653 1 (𝜑𝑉 = (𝐼 mVar 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1976  {crab 2899  Vcvv 3172  ifcif 4035  cmpt 4637  ccnv 5026  cima 5030  cfv 5789  (class class class)co 6526  𝑚 cmap 7721  Fincfn 7818  0cc0 9792  1c1 9793  cn 10869  0cn0 11141  s cress 15644  0gc0g 15871  1rcur 18272  Ringcrg 18318  SubRingcsubrg 18547   mVar cmvr 19121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-2 10928  df-3 10929  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-ress 15650  df-plusg 15729  df-mulr 15730  df-0g 15873  df-mgm 17013  df-sgrp 17055  df-mnd 17066  df-grp 17196  df-subg 17362  df-mgp 18261  df-ur 18273  df-ring 18320  df-subrg 18549  df-mvr 19126
This theorem is referenced by:  subrgmvrf  19231  evlsvarsrng  19297  evlvar  19298  subrgvr1  19400  evls1var  19471
  Copyright terms: Public domain W3C validator