Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsaliuncl Structured version   Visualization version   GIF version

Theorem subsaliuncl 42648
Description: A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
subsaliuncl.1 (𝜑𝑆 ∈ SAlg)
subsaliuncl.2 (𝜑𝐷𝑉)
subsaliuncl.3 𝑇 = (𝑆t 𝐷)
subsaliuncl.4 (𝜑𝐹:ℕ⟶𝑇)
Assertion
Ref Expression
subsaliuncl (𝜑 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)
Distinct variable groups:   𝐷,𝑛   𝑛,𝐹   𝑆,𝑛   𝜑,𝑛
Allowed substitution hints:   𝑇(𝑛)   𝑉(𝑛)

Proof of Theorem subsaliuncl
Dummy variables 𝑒 𝑓 𝑧 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . . . . . . 9 {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}
2 subsaliuncl.1 . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
31, 2rabexd 5238 . . . . . . . 8 (𝜑 → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V)
43ralrimivw 3185 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V)
5 eqid 2823 . . . . . . . 8 (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) = (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
65fnmpt 6490 . . . . . . 7 (∀𝑛 ∈ ℕ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V → (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) Fn ℕ)
74, 6syl 17 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) Fn ℕ)
8 nnex 11646 . . . . . . 7 ℕ ∈ V
9 fnrndomg 9960 . . . . . . 7 (ℕ ∈ V → ((𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) Fn ℕ → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ℕ))
108, 9ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) Fn ℕ → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ℕ)
117, 10syl 17 . . . . 5 (𝜑 → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ℕ)
12 nnenom 13351 . . . . . 6 ℕ ≈ ω
1312a1i 11 . . . . 5 (𝜑 → ℕ ≈ ω)
14 domentr 8570 . . . . 5 ((ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ℕ ∧ ℕ ≈ ω) → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ω)
1511, 13, 14syl2anc 586 . . . 4 (𝜑 → ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ≼ ω)
16 vex 3499 . . . . . . . 8 𝑦 ∈ V
175elrnmpt 5830 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ↔ ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
1816, 17ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ↔ ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
1918biimpi 218 . . . . . 6 (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
2019adantl 484 . . . . 5 ((𝜑𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})) → ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
21 simp3 1134 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
22 subsaliuncl.4 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶𝑇)
2322ffvelrnda 6853 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑇)
24 subsaliuncl.3 . . . . . . . . . . . . 13 𝑇 = (𝑆t 𝐷)
2523, 24eleqtrdi 2925 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (𝑆t 𝐷))
26 subsaliuncl.2 . . . . . . . . . . . . . . 15 (𝜑𝐷𝑉)
2726elexd 3516 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ V)
28 elrest 16703 . . . . . . . . . . . . . 14 ((𝑆 ∈ SAlg ∧ 𝐷 ∈ V) → ((𝐹𝑛) ∈ (𝑆t 𝐷) ↔ ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷)))
292, 27, 28syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝑛) ∈ (𝑆t 𝐷) ↔ ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷)))
3029adantr 483 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (𝑆t 𝐷) ↔ ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷)))
3125, 30mpbid 234 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷))
32 rabn0 4341 . . . . . . . . . . 11 ({𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ≠ ∅ ↔ ∃𝑥𝑆 (𝐹𝑛) = (𝑥𝐷))
3331, 32sylibr 236 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ≠ ∅)
34333adant3 1128 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ≠ ∅)
3521, 34eqnetrd 3085 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → 𝑦 ≠ ∅)
36353exp 1115 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ → (𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦 ≠ ∅)))
3736rexlimdv 3285 . . . . . 6 (𝜑 → (∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦 ≠ ∅))
3837adantr 483 . . . . 5 ((𝜑𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})) → (∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦 ≠ ∅))
3920, 38mpd 15 . . . 4 ((𝜑𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})) → 𝑦 ≠ ∅)
4015, 39axccdom 41494 . . 3 (𝜑 → ∃𝑓(𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦))
41 simpl 485 . . . . . 6 ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)) → 𝜑)
42 fveq2 6672 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
4342eqeq1d 2825 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐹𝑛) = (𝑥𝐷) ↔ (𝐹𝑚) = (𝑥𝐷)))
4443rabbidv 3482 . . . . . . . . . . 11 (𝑛 = 𝑚 → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} = {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})
4544cbvmptv 5171 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) = (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})
4645rneqi 5809 . . . . . . . . 9 ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) = ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})
4746fneq2i 6453 . . . . . . . 8 (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ↔ 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}))
4847biimpi 218 . . . . . . 7 (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) → 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}))
4948ad2antrl 726 . . . . . 6 ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)) → 𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}))
5046raleqi 3415 . . . . . . . . 9 (∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 ↔ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
5150biimpi 218 . . . . . . . 8 (∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 → ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
5251adantl 484 . . . . . . 7 ((𝜑 ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
5352adantrl 714 . . . . . 6 ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
54 nfv 1915 . . . . . . 7 𝑧(𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
5523ad2ant1 1129 . . . . . . 7 ((𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → 𝑆 ∈ SAlg)
56 ineq1 4183 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝐷) = (𝑧𝐷))
5756eqeq2d 2834 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝐹𝑚) = (𝑥𝐷) ↔ (𝐹𝑚) = (𝑧𝐷)))
5857cbvrabv 3493 . . . . . . . . . 10 {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)} = {𝑧𝑆 ∣ (𝐹𝑚) = (𝑧𝐷)}
5958mpteq2i 5160 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) = (𝑚 ∈ ℕ ↦ {𝑧𝑆 ∣ (𝐹𝑚) = (𝑧𝐷)})
6045, 59eqtr2i 2847 . . . . . . . 8 (𝑚 ∈ ℕ ↦ {𝑧𝑆 ∣ (𝐹𝑚) = (𝑧𝐷)}) = (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
6160coeq2i 5733 . . . . . . 7 (𝑓 ∘ (𝑚 ∈ ℕ ↦ {𝑧𝑆 ∣ (𝐹𝑚) = (𝑧𝐷)})) = (𝑓 ∘ (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
6247biimpri 230 . . . . . . . 8 (𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) → 𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
63623ad2ant2 1130 . . . . . . 7 ((𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → 𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
6446eqcomi 2832 . . . . . . . . . . 11 ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) = ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
6564raleqi 3415 . . . . . . . . . 10 (∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 ↔ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)
66 fveq2 6672 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑓𝑦) = (𝑓𝑧))
67 id 22 . . . . . . . . . . . 12 (𝑦 = 𝑧𝑦 = 𝑧)
6866, 67eleq12d 2909 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑓𝑦) ∈ 𝑦 ↔ (𝑓𝑧) ∈ 𝑧))
6968cbvralvw 3451 . . . . . . . . . 10 (∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑧) ∈ 𝑧)
7065, 69bitri 277 . . . . . . . . 9 (∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑧) ∈ 𝑧)
7170biimpi 218 . . . . . . . 8 (∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦 → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑧) ∈ 𝑧)
72713ad2ant3 1131 . . . . . . 7 ((𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑧) ∈ 𝑧)
7354, 55, 5, 61, 63, 72subsaliuncllem 42647 . . . . . 6 ((𝜑𝑓 Fn ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑚 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑚) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
7441, 49, 53, 73syl3anc 1367 . . . . 5 ((𝜑 ∧ (𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦)) → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
7574ex 415 . . . 4 (𝜑 → ((𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)))
7675exlimdv 1934 . . 3 (𝜑 → (∃𝑓(𝑓 Fn ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) ∧ ∀𝑦 ∈ ran (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})(𝑓𝑦) ∈ 𝑦) → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)))
7740, 76mpd 15 . 2 (𝜑 → ∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
7823ad2ant1 1129 . . . . . 6 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑆 ∈ SAlg)
79273ad2ant1 1129 . . . . . 6 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝐷 ∈ V)
802adantr 483 . . . . . . . 8 ((𝜑𝑒 ∈ (𝑆m ℕ)) → 𝑆 ∈ SAlg)
81 nnct 13352 . . . . . . . . 9 ℕ ≼ ω
8281a1i 11 . . . . . . . 8 ((𝜑𝑒 ∈ (𝑆m ℕ)) → ℕ ≼ ω)
83 elmapi 8430 . . . . . . . . . 10 (𝑒 ∈ (𝑆m ℕ) → 𝑒:ℕ⟶𝑆)
8483adantl 484 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝑆m ℕ)) → 𝑒:ℕ⟶𝑆)
8584ffvelrnda 6853 . . . . . . . 8 (((𝜑𝑒 ∈ (𝑆m ℕ)) ∧ 𝑛 ∈ ℕ) → (𝑒𝑛) ∈ 𝑆)
8680, 82, 85saliuncl 42614 . . . . . . 7 ((𝜑𝑒 ∈ (𝑆m ℕ)) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
87863adant3 1128 . . . . . 6 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑛 ∈ ℕ (𝑒𝑛) ∈ 𝑆)
88 eqid 2823 . . . . . 6 ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷)
8978, 79, 87, 88elrestd 41381 . . . . 5 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷) ∈ (𝑆t 𝐷))
90 nfra1 3221 . . . . . . . . 9 𝑛𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)
91 rspa 3208 . . . . . . . . 9 ((∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
9290, 91iuneq2df 41315 . . . . . . . 8 (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ (𝐹𝑛) = 𝑛 ∈ ℕ ((𝑒𝑛) ∩ 𝐷))
93 iunin1 4996 . . . . . . . . 9 𝑛 ∈ ℕ ((𝑒𝑛) ∩ 𝐷) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷)
9493a1i 11 . . . . . . . 8 (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ ((𝑒𝑛) ∩ 𝐷) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷))
9592, 94eqtrd 2858 . . . . . . 7 (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ (𝐹𝑛) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷))
96953ad2ant3 1131 . . . . . 6 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑛 ∈ ℕ (𝐹𝑛) = ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷))
9724a1i 11 . . . . . 6 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑇 = (𝑆t 𝐷))
9896, 97eleq12d 2909 . . . . 5 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → ( 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇 ↔ ( 𝑛 ∈ ℕ (𝑒𝑛) ∩ 𝐷) ∈ (𝑆t 𝐷)))
9989, 98mpbird 259 . . . 4 ((𝜑𝑒 ∈ (𝑆m ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷)) → 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)
100993exp 1115 . . 3 (𝜑 → (𝑒 ∈ (𝑆m ℕ) → (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)))
101100rexlimdv 3285 . 2 (𝜑 → (∃𝑒 ∈ (𝑆m ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) → 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇))
10277, 101mpd 15 1 (𝜑 𝑛 ∈ ℕ (𝐹𝑛) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  cin 3937  c0 4293   ciun 4921   class class class wbr 5068  cmpt 5148  ran crn 5558  ccom 5561   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  ωcom 7582  m cmap 8408  cen 8508  cdom 8509  cn 11640  t crest 16696  SAlgcsalg 42600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-ac2 9887  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-acn 9373  df-ac 9544  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-rest 16698  df-salg 42601
This theorem is referenced by:  subsalsal  42649
  Copyright terms: Public domain W3C validator