Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsalsal Structured version   Visualization version   GIF version

Theorem subsalsal 39053
Description: A subspace sigma-algebra is a sigma algebra. This is Lemma 121A of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
subsalsal.1 (𝜑𝑆 ∈ SAlg)
subsalsal.2 (𝜑𝐷𝑉)
subsalsal.3 𝑇 = (𝑆t 𝐷)
Assertion
Ref Expression
subsalsal (𝜑𝑇 ∈ SAlg)

Proof of Theorem subsalsal
Dummy variables 𝑛 𝑦 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subsalsal.3 . . . 4 𝑇 = (𝑆t 𝐷)
21ovexi 6552 . . 3 𝑇 ∈ V
32a1i 11 . 2 (𝜑𝑇 ∈ V)
4 subsalsal.1 . . . 4 (𝜑𝑆 ∈ SAlg)
5 subsalsal.2 . . . 4 (𝜑𝐷𝑉)
640sald 39044 . . . 4 (𝜑 → ∅ ∈ 𝑆)
7 0in 3916 . . . . 5 (∅ ∩ 𝐷) = ∅
87eqcomi 2614 . . . 4 ∅ = (∅ ∩ 𝐷)
94, 5, 6, 8elrestd 38121 . . 3 (𝜑 → ∅ ∈ (𝑆t 𝐷))
109, 1syl6eleqr 2694 . 2 (𝜑 → ∅ ∈ 𝑇)
11 eqid 2605 . 2 𝑇 = 𝑇
12 id 22 . . . . . 6 (𝑥𝑇𝑥𝑇)
1312, 1syl6eleq 2693 . . . . 5 (𝑥𝑇𝑥 ∈ (𝑆t 𝐷))
1413adantl 480 . . . 4 ((𝜑𝑥𝑇) → 𝑥 ∈ (𝑆t 𝐷))
15 elrest 15853 . . . . . 6 ((𝑆 ∈ SAlg ∧ 𝐷𝑉) → (𝑥 ∈ (𝑆t 𝐷) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐷)))
164, 5, 15syl2anc 690 . . . . 5 (𝜑 → (𝑥 ∈ (𝑆t 𝐷) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐷)))
1716adantr 479 . . . 4 ((𝜑𝑥𝑇) → (𝑥 ∈ (𝑆t 𝐷) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐷)))
1814, 17mpbid 220 . . 3 ((𝜑𝑥𝑇) → ∃𝑦𝑆 𝑥 = (𝑦𝐷))
194adantr 479 . . . . . . . . 9 ((𝜑𝑦𝑆) → 𝑆 ∈ SAlg)
20193adant3 1073 . . . . . . . 8 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → 𝑆 ∈ SAlg)
2153ad2ant1 1074 . . . . . . . 8 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → 𝐷𝑉)
22 simpr 475 . . . . . . . . . 10 ((𝜑𝑦𝑆) → 𝑦𝑆)
2319, 22saldifcld 39041 . . . . . . . . 9 ((𝜑𝑦𝑆) → ( 𝑆𝑦) ∈ 𝑆)
24233adant3 1073 . . . . . . . 8 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → ( 𝑆𝑦) ∈ 𝑆)
25 eqid 2605 . . . . . . . 8 (( 𝑆𝑦) ∩ 𝐷) = (( 𝑆𝑦) ∩ 𝐷)
2620, 21, 24, 25elrestd 38121 . . . . . . 7 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → (( 𝑆𝑦) ∩ 𝐷) ∈ (𝑆t 𝐷))
271unieqi 4371 . . . . . . . . . . . . . 14 𝑇 = (𝑆t 𝐷)
2827a1i 11 . . . . . . . . . . . . 13 (𝜑 𝑇 = (𝑆t 𝐷))
294, 5restuni3 38132 . . . . . . . . . . . . 13 (𝜑 (𝑆t 𝐷) = ( 𝑆𝐷))
3028, 29eqtrd 2639 . . . . . . . . . . . 12 (𝜑 𝑇 = ( 𝑆𝐷))
3130adantr 479 . . . . . . . . . . 11 ((𝜑𝑥 = (𝑦𝐷)) → 𝑇 = ( 𝑆𝐷))
32 simpr 475 . . . . . . . . . . 11 ((𝜑𝑥 = (𝑦𝐷)) → 𝑥 = (𝑦𝐷))
3331, 32difeq12d 3686 . . . . . . . . . 10 ((𝜑𝑥 = (𝑦𝐷)) → ( 𝑇𝑥) = (( 𝑆𝐷) ∖ (𝑦𝐷)))
34 indifdir 3837 . . . . . . . . . . . 12 (( 𝑆𝑦) ∩ 𝐷) = (( 𝑆𝐷) ∖ (𝑦𝐷))
3534eqcomi 2614 . . . . . . . . . . 11 (( 𝑆𝐷) ∖ (𝑦𝐷)) = (( 𝑆𝑦) ∩ 𝐷)
3635a1i 11 . . . . . . . . . 10 ((𝜑𝑥 = (𝑦𝐷)) → (( 𝑆𝐷) ∖ (𝑦𝐷)) = (( 𝑆𝑦) ∩ 𝐷))
3733, 36eqtrd 2639 . . . . . . . . 9 ((𝜑𝑥 = (𝑦𝐷)) → ( 𝑇𝑥) = (( 𝑆𝑦) ∩ 𝐷))
381a1i 11 . . . . . . . . 9 ((𝜑𝑥 = (𝑦𝐷)) → 𝑇 = (𝑆t 𝐷))
3937, 38eleq12d 2677 . . . . . . . 8 ((𝜑𝑥 = (𝑦𝐷)) → (( 𝑇𝑥) ∈ 𝑇 ↔ (( 𝑆𝑦) ∩ 𝐷) ∈ (𝑆t 𝐷)))
40393adant2 1072 . . . . . . 7 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → (( 𝑇𝑥) ∈ 𝑇 ↔ (( 𝑆𝑦) ∩ 𝐷) ∈ (𝑆t 𝐷)))
4126, 40mpbird 245 . . . . . 6 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → ( 𝑇𝑥) ∈ 𝑇)
42413exp 1255 . . . . 5 (𝜑 → (𝑦𝑆 → (𝑥 = (𝑦𝐷) → ( 𝑇𝑥) ∈ 𝑇)))
4342rexlimdv 3007 . . . 4 (𝜑 → (∃𝑦𝑆 𝑥 = (𝑦𝐷) → ( 𝑇𝑥) ∈ 𝑇))
4443adantr 479 . . 3 ((𝜑𝑥𝑇) → (∃𝑦𝑆 𝑥 = (𝑦𝐷) → ( 𝑇𝑥) ∈ 𝑇))
4518, 44mpd 15 . 2 ((𝜑𝑥𝑇) → ( 𝑇𝑥) ∈ 𝑇)
464adantr 479 . . 3 ((𝜑𝑓:ℕ⟶𝑇) → 𝑆 ∈ SAlg)
475adantr 479 . . 3 ((𝜑𝑓:ℕ⟶𝑇) → 𝐷𝑉)
48 simpr 475 . . 3 ((𝜑𝑓:ℕ⟶𝑇) → 𝑓:ℕ⟶𝑇)
4946, 47, 1, 48subsaliuncl 39052 . 2 ((𝜑𝑓:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝑓𝑛) ∈ 𝑇)
503, 10, 11, 45, 49issalnnd 39039 1 (𝜑𝑇 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1975  wrex 2892  Vcvv 3168  cdif 3532  cin 3534  c0 3869   cuni 4362  wf 5782  (class class class)co 6523  cn 10863  t crest 15846  SAlgcsalg 39004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cc 9113  ax-ac2 9141  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-map 7719  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-card 8621  df-acn 8624  df-ac 8795  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-n0 11136  df-z 11207  df-uz 11516  df-rest 15848  df-salg 39005
This theorem is referenced by:  subsaluni  39054  issmfltle  39422  issmflelem  39431  issmfle  39432  smfpimltxr  39434  smfconst  39436  issmfgtlem  39442  issmfgt  39443  smfaddlem2  39450  issmfgelem  39455  issmfge  39456  smfpimgtxr  39466  smfpimioompt  39471  smfresal  39473  smfrec  39474  smfmullem4  39479
  Copyright terms: Public domain W3C validator