Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsalsal Structured version   Visualization version   GIF version

Theorem subsalsal 42519
Description: A subspace sigma-algebra is a sigma algebra. This is Lemma 121A of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
subsalsal.1 (𝜑𝑆 ∈ SAlg)
subsalsal.2 (𝜑𝐷𝑉)
subsalsal.3 𝑇 = (𝑆t 𝐷)
Assertion
Ref Expression
subsalsal (𝜑𝑇 ∈ SAlg)

Proof of Theorem subsalsal
Dummy variables 𝑛 𝑦 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subsalsal.3 . . . 4 𝑇 = (𝑆t 𝐷)
21ovexi 7179 . . 3 𝑇 ∈ V
32a1i 11 . 2 (𝜑𝑇 ∈ V)
4 subsalsal.1 . . . 4 (𝜑𝑆 ∈ SAlg)
5 subsalsal.2 . . . 4 (𝜑𝐷𝑉)
640sald 42510 . . . 4 (𝜑 → ∅ ∈ 𝑆)
7 0in 4344 . . . . 5 (∅ ∩ 𝐷) = ∅
87eqcomi 2827 . . . 4 ∅ = (∅ ∩ 𝐷)
94, 5, 6, 8elrestd 41251 . . 3 (𝜑 → ∅ ∈ (𝑆t 𝐷))
109, 1eleqtrrdi 2921 . 2 (𝜑 → ∅ ∈ 𝑇)
11 eqid 2818 . 2 𝑇 = 𝑇
12 id 22 . . . . . 6 (𝑥𝑇𝑥𝑇)
1312, 1eleqtrdi 2920 . . . . 5 (𝑥𝑇𝑥 ∈ (𝑆t 𝐷))
1413adantl 482 . . . 4 ((𝜑𝑥𝑇) → 𝑥 ∈ (𝑆t 𝐷))
15 elrest 16689 . . . . . 6 ((𝑆 ∈ SAlg ∧ 𝐷𝑉) → (𝑥 ∈ (𝑆t 𝐷) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐷)))
164, 5, 15syl2anc 584 . . . . 5 (𝜑 → (𝑥 ∈ (𝑆t 𝐷) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐷)))
1716adantr 481 . . . 4 ((𝜑𝑥𝑇) → (𝑥 ∈ (𝑆t 𝐷) ↔ ∃𝑦𝑆 𝑥 = (𝑦𝐷)))
1814, 17mpbid 233 . . 3 ((𝜑𝑥𝑇) → ∃𝑦𝑆 𝑥 = (𝑦𝐷))
194adantr 481 . . . . . . . . 9 ((𝜑𝑦𝑆) → 𝑆 ∈ SAlg)
20193adant3 1124 . . . . . . . 8 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → 𝑆 ∈ SAlg)
2153ad2ant1 1125 . . . . . . . 8 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → 𝐷𝑉)
22 simpr 485 . . . . . . . . . 10 ((𝜑𝑦𝑆) → 𝑦𝑆)
2319, 22saldifcld 42507 . . . . . . . . 9 ((𝜑𝑦𝑆) → ( 𝑆𝑦) ∈ 𝑆)
24233adant3 1124 . . . . . . . 8 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → ( 𝑆𝑦) ∈ 𝑆)
25 eqid 2818 . . . . . . . 8 (( 𝑆𝑦) ∩ 𝐷) = (( 𝑆𝑦) ∩ 𝐷)
2620, 21, 24, 25elrestd 41251 . . . . . . 7 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → (( 𝑆𝑦) ∩ 𝐷) ∈ (𝑆t 𝐷))
271unieqi 4839 . . . . . . . . . . . . . 14 𝑇 = (𝑆t 𝐷)
2827a1i 11 . . . . . . . . . . . . 13 (𝜑 𝑇 = (𝑆t 𝐷))
294, 5restuni3 41261 . . . . . . . . . . . . 13 (𝜑 (𝑆t 𝐷) = ( 𝑆𝐷))
3028, 29eqtrd 2853 . . . . . . . . . . . 12 (𝜑 𝑇 = ( 𝑆𝐷))
3130adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 = (𝑦𝐷)) → 𝑇 = ( 𝑆𝐷))
32 simpr 485 . . . . . . . . . . 11 ((𝜑𝑥 = (𝑦𝐷)) → 𝑥 = (𝑦𝐷))
3331, 32difeq12d 4097 . . . . . . . . . 10 ((𝜑𝑥 = (𝑦𝐷)) → ( 𝑇𝑥) = (( 𝑆𝐷) ∖ (𝑦𝐷)))
34 indifdir 4257 . . . . . . . . . . . 12 (( 𝑆𝑦) ∩ 𝐷) = (( 𝑆𝐷) ∖ (𝑦𝐷))
3534eqcomi 2827 . . . . . . . . . . 11 (( 𝑆𝐷) ∖ (𝑦𝐷)) = (( 𝑆𝑦) ∩ 𝐷)
3635a1i 11 . . . . . . . . . 10 ((𝜑𝑥 = (𝑦𝐷)) → (( 𝑆𝐷) ∖ (𝑦𝐷)) = (( 𝑆𝑦) ∩ 𝐷))
3733, 36eqtrd 2853 . . . . . . . . 9 ((𝜑𝑥 = (𝑦𝐷)) → ( 𝑇𝑥) = (( 𝑆𝑦) ∩ 𝐷))
381a1i 11 . . . . . . . . 9 ((𝜑𝑥 = (𝑦𝐷)) → 𝑇 = (𝑆t 𝐷))
3937, 38eleq12d 2904 . . . . . . . 8 ((𝜑𝑥 = (𝑦𝐷)) → (( 𝑇𝑥) ∈ 𝑇 ↔ (( 𝑆𝑦) ∩ 𝐷) ∈ (𝑆t 𝐷)))
40393adant2 1123 . . . . . . 7 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → (( 𝑇𝑥) ∈ 𝑇 ↔ (( 𝑆𝑦) ∩ 𝐷) ∈ (𝑆t 𝐷)))
4126, 40mpbird 258 . . . . . 6 ((𝜑𝑦𝑆𝑥 = (𝑦𝐷)) → ( 𝑇𝑥) ∈ 𝑇)
42413exp 1111 . . . . 5 (𝜑 → (𝑦𝑆 → (𝑥 = (𝑦𝐷) → ( 𝑇𝑥) ∈ 𝑇)))
4342rexlimdv 3280 . . . 4 (𝜑 → (∃𝑦𝑆 𝑥 = (𝑦𝐷) → ( 𝑇𝑥) ∈ 𝑇))
4443adantr 481 . . 3 ((𝜑𝑥𝑇) → (∃𝑦𝑆 𝑥 = (𝑦𝐷) → ( 𝑇𝑥) ∈ 𝑇))
4518, 44mpd 15 . 2 ((𝜑𝑥𝑇) → ( 𝑇𝑥) ∈ 𝑇)
464adantr 481 . . 3 ((𝜑𝑓:ℕ⟶𝑇) → 𝑆 ∈ SAlg)
475adantr 481 . . 3 ((𝜑𝑓:ℕ⟶𝑇) → 𝐷𝑉)
48 simpr 485 . . 3 ((𝜑𝑓:ℕ⟶𝑇) → 𝑓:ℕ⟶𝑇)
4946, 47, 1, 48subsaliuncl 42518 . 2 ((𝜑𝑓:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝑓𝑛) ∈ 𝑇)
503, 10, 11, 45, 49issalnnd 42505 1 (𝜑𝑇 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wrex 3136  Vcvv 3492  cdif 3930  cin 3932  c0 4288   cuni 4830  wf 6344  (class class class)co 7145  cn 11626  t crest 16682  SAlgcsalg 42470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cc 9845  ax-ac2 9873  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-acn 9359  df-ac 9530  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-rest 16684  df-salg 42471
This theorem is referenced by:  subsaluni  42520  issmflelem  42898  issmfle  42899  smfpimltxr  42901  smfconst  42903  issmfgtlem  42909  issmfgt  42910  smfaddlem2  42917  issmfgelem  42922  issmfge  42923  smfpimgtxr  42933  smfpimioompt  42938  smfresal  42940  smfrec  42941  smfmullem4  42946
  Copyright terms: Public domain W3C validator