MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubc Structured version   Visualization version   GIF version

Theorem subsubc 17125
Description: A subcategory of a subcategory is a subcategory. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypothesis
Ref Expression
subsubc.d 𝐷 = (𝐶cat 𝐻)
Assertion
Ref Expression
subsubc (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻)))

Proof of Theorem subsubc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝐽 ∈ (Subcat‘𝐷) → 𝐽 ∈ (Subcat‘𝐷))
2 eqid 2823 . . . . . 6 (Homf𝐷) = (Homf𝐷)
31, 2subcssc 17112 . . . . 5 (𝐽 ∈ (Subcat‘𝐷) → 𝐽cat (Homf𝐷))
4 subsubc.d . . . . . . 7 𝐷 = (𝐶cat 𝐻)
5 eqid 2823 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
6 subcrcl 17088 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
7 id 22 . . . . . . . 8 (𝐻 ∈ (Subcat‘𝐶) → 𝐻 ∈ (Subcat‘𝐶))
8 eqidd 2824 . . . . . . . 8 (𝐻 ∈ (Subcat‘𝐶) → dom dom 𝐻 = dom dom 𝐻)
97, 8subcfn 17113 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
107, 9, 5subcss1 17114 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → dom dom 𝐻 ⊆ (Base‘𝐶))
114, 5, 6, 9, 10reschomf 17103 . . . . . 6 (𝐻 ∈ (Subcat‘𝐶) → 𝐻 = (Homf𝐷))
1211breq2d 5080 . . . . 5 (𝐻 ∈ (Subcat‘𝐶) → (𝐽cat 𝐻𝐽cat (Homf𝐷)))
133, 12syl5ibr 248 . . . 4 (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) → 𝐽cat 𝐻))
1413pm4.71rd 565 . . 3 (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽cat 𝐻𝐽 ∈ (Subcat‘𝐷))))
15 simpr 487 . . . . . . . 8 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐽cat 𝐻)
16 simpl 485 . . . . . . . . 9 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐻 ∈ (Subcat‘𝐶))
17 eqid 2823 . . . . . . . . 9 (Homf𝐶) = (Homf𝐶)
1816, 17subcssc 17112 . . . . . . . 8 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐻cat (Homf𝐶))
19 ssctr 17097 . . . . . . . 8 ((𝐽cat 𝐻𝐻cat (Homf𝐶)) → 𝐽cat (Homf𝐶))
2015, 18, 19syl2anc 586 . . . . . . 7 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐽cat (Homf𝐶))
2112biimpa 479 . . . . . . 7 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐽cat (Homf𝐷))
2220, 212thd 267 . . . . . 6 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐽cat (Homf𝐶) ↔ 𝐽cat (Homf𝐷)))
2316adantr 483 . . . . . . . . 9 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → 𝐻 ∈ (Subcat‘𝐶))
249adantr 483 . . . . . . . . . 10 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
2524adantr 483 . . . . . . . . 9 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
26 eqid 2823 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
27 eqidd 2824 . . . . . . . . . . . 12 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → dom dom 𝐽 = dom dom 𝐽)
2815, 27sscfn1 17089 . . . . . . . . . . 11 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽))
2928, 24, 15ssc1 17093 . . . . . . . . . 10 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → dom dom 𝐽 ⊆ dom dom 𝐻)
3029sselda 3969 . . . . . . . . 9 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → 𝑥 ∈ dom dom 𝐻)
314, 23, 25, 26, 30subcid 17119 . . . . . . . 8 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → ((Id‘𝐶)‘𝑥) = ((Id‘𝐷)‘𝑥))
3231eleq1d 2899 . . . . . . 7 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ((Id‘𝐷)‘𝑥) ∈ (𝑥𝐽𝑥)))
3332ralbidva 3198 . . . . . 6 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (∀𝑥 ∈ dom dom 𝐽((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐷)‘𝑥) ∈ (𝑥𝐽𝑥)))
344oveq1i 7168 . . . . . . . 8 (𝐷cat 𝐽) = ((𝐶cat 𝐻) ↾cat 𝐽)
356adantr 483 . . . . . . . . 9 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐶 ∈ Cat)
36 dmexg 7615 . . . . . . . . . . 11 (𝐻 ∈ (Subcat‘𝐶) → dom 𝐻 ∈ V)
3736dmexd 7617 . . . . . . . . . 10 (𝐻 ∈ (Subcat‘𝐶) → dom dom 𝐻 ∈ V)
3837adantr 483 . . . . . . . . 9 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → dom dom 𝐻 ∈ V)
3935, 24, 28, 38, 29rescabs 17105 . . . . . . . 8 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → ((𝐶cat 𝐻) ↾cat 𝐽) = (𝐶cat 𝐽))
4034, 39syl5req 2871 . . . . . . 7 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐶cat 𝐽) = (𝐷cat 𝐽))
4140eleq1d 2899 . . . . . 6 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → ((𝐶cat 𝐽) ∈ Cat ↔ (𝐷cat 𝐽) ∈ Cat))
4222, 33, 413anbi123d 1432 . . . . 5 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → ((𝐽cat (Homf𝐶) ∧ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat) ↔ (𝐽cat (Homf𝐷) ∧ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐷)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐷cat 𝐽) ∈ Cat)))
43 eqid 2823 . . . . . 6 (𝐶cat 𝐽) = (𝐶cat 𝐽)
4417, 26, 43, 35, 28issubc3 17121 . . . . 5 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat (Homf𝐶) ∧ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)))
45 eqid 2823 . . . . . 6 (Id‘𝐷) = (Id‘𝐷)
46 eqid 2823 . . . . . 6 (𝐷cat 𝐽) = (𝐷cat 𝐽)
474, 7subccat 17120 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → 𝐷 ∈ Cat)
4847adantr 483 . . . . . 6 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐷 ∈ Cat)
492, 45, 46, 48, 28issubc3 17121 . . . . 5 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽cat (Homf𝐷) ∧ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐷)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐷cat 𝐽) ∈ Cat)))
5042, 44, 493bitr4rd 314 . . . 4 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐽 ∈ (Subcat‘𝐷) ↔ 𝐽 ∈ (Subcat‘𝐶)))
5150pm5.32da 581 . . 3 (𝐻 ∈ (Subcat‘𝐶) → ((𝐽cat 𝐻𝐽 ∈ (Subcat‘𝐷)) ↔ (𝐽cat 𝐻𝐽 ∈ (Subcat‘𝐶))))
5214, 51bitrd 281 . 2 (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽cat 𝐻𝐽 ∈ (Subcat‘𝐶))))
5352biancomd 466 1 (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496   class class class wbr 5068   × cxp 5555  dom cdm 5557   Fn wfn 6352  cfv 6357  (class class class)co 7158  Basecbs 16485  Catccat 16937  Idccid 16938  Homf chomf 16939  cat cssc 17079  cat cresc 17080  Subcatcsubc 17081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-hom 16591  df-cco 16592  df-cat 16941  df-cid 16942  df-homf 16943  df-ssc 17082  df-resc 17083  df-subc 17084
This theorem is referenced by:  fldhmsubc  44362  fldhmsubcALTV  44380
  Copyright terms: Public domain W3C validator