MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubg Structured version   Visualization version   GIF version

Theorem subsubg 18301
Description: A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
subsubg.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subsubg (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)))

Proof of Theorem subsubg
StepHypRef Expression
1 subgrcl 18283 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
21adantr 483 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐺 ∈ Grp)
3 eqid 2821 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
43subgss 18279 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐻) → 𝐴 ⊆ (Base‘𝐻))
54adantl 484 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴 ⊆ (Base‘𝐻))
6 subsubg.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
76subgbas 18282 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
87adantr 483 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝑆 = (Base‘𝐻))
95, 8sseqtrrd 4007 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴𝑆)
10 eqid 2821 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
1110subgss 18279 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1211adantr 483 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝑆 ⊆ (Base‘𝐺))
139, 12sstrd 3976 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴 ⊆ (Base‘𝐺))
146oveq1i 7165 . . . . . . 7 (𝐻s 𝐴) = ((𝐺s 𝑆) ↾s 𝐴)
15 ressabs 16562 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆) → ((𝐺s 𝑆) ↾s 𝐴) = (𝐺s 𝐴))
1614, 15syl5eq 2868 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆) → (𝐻s 𝐴) = (𝐺s 𝐴))
179, 16syldan 593 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐻s 𝐴) = (𝐺s 𝐴))
18 eqid 2821 . . . . . . 7 (𝐻s 𝐴) = (𝐻s 𝐴)
1918subggrp 18281 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐻) → (𝐻s 𝐴) ∈ Grp)
2019adantl 484 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐻s 𝐴) ∈ Grp)
2117, 20eqeltrrd 2914 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐺s 𝐴) ∈ Grp)
2210issubg 18278 . . . 4 (𝐴 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝐺) ∧ (𝐺s 𝐴) ∈ Grp))
232, 13, 21, 22syl3anbrc 1339 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴 ∈ (SubGrp‘𝐺))
2423, 9jca 514 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆))
256subggrp 18281 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
2625adantr 483 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐻 ∈ Grp)
27 simprr 771 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐴𝑆)
287adantr 483 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝑆 = (Base‘𝐻))
2927, 28sseqtrd 4006 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ⊆ (Base‘𝐻))
3016adantrl 714 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) = (𝐺s 𝐴))
31 eqid 2821 . . . . . 6 (𝐺s 𝐴) = (𝐺s 𝐴)
3231subggrp 18281 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → (𝐺s 𝐴) ∈ Grp)
3332ad2antrl 726 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → (𝐺s 𝐴) ∈ Grp)
3430, 33eqeltrd 2913 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) ∈ Grp)
353issubg 18278 . . 3 (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐻 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝐻) ∧ (𝐻s 𝐴) ∈ Grp))
3626, 29, 34, 35syl3anbrc 1339 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ∈ (SubGrp‘𝐻))
3724, 36impbida 799 1 (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wss 3935  cfv 6354  (class class class)co 7155  Basecbs 16482  s cress 16483  Grpcgrp 18102  SubGrpcsubg 18272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-1cn 10594  ax-addcl 10596
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-nn 11638  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-subg 18275
This theorem is referenced by:  nmznsg  18319  subgslw  18740  subgdmdprd  19155  subgdprd  19156  ablfac1c  19192  pgpfaclem1  19202  pgpfaclem2  19203  ablfaclem3  19208
  Copyright terms: Public domain W3C validator