MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subupgr Structured version   Visualization version   GIF version

Theorem subupgr 27071
Description: A subgraph of a pseudograph is a pseudograph. (Contributed by AV, 16-Nov-2020.) (Proof shortened by AV, 21-Nov-2020.)
Assertion
Ref Expression
subupgr ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph)

Proof of Theorem subupgr
Dummy variables 𝑥 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
2 eqid 2823 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2823 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
4 eqid 2823 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
5 eqid 2823 . . . 4 (Edg‘𝑆) = (Edg‘𝑆)
61, 2, 3, 4, 5subgrprop2 27058 . . 3 (𝑆 SubGraph 𝐺 → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)))
7 upgruhgr 26889 . . . . . . . . . 10 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
8 subgruhgrfun 27066 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
97, 8sylan 582 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → Fun (iEdg‘𝑆))
109ancoms 461 . . . . . . . 8 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → Fun (iEdg‘𝑆))
1110funfnd 6388 . . . . . . 7 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
1211adantl 484 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (iEdg‘𝑆) Fn dom (iEdg‘𝑆))
13 fveq2 6672 . . . . . . . . . 10 (𝑒 = ((iEdg‘𝑆)‘𝑥) → (♯‘𝑒) = (♯‘((iEdg‘𝑆)‘𝑥)))
1413breq1d 5078 . . . . . . . . 9 (𝑒 = ((iEdg‘𝑆)‘𝑥) → ((♯‘𝑒) ≤ 2 ↔ (♯‘((iEdg‘𝑆)‘𝑥)) ≤ 2))
157anim2i 618 . . . . . . . . . . . . . 14 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph))
1615adantl 484 . . . . . . . . . . . . 13 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑆 SubGraph 𝐺𝐺 ∈ UHGraph))
1716ancomd 464 . . . . . . . . . . . 12 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺))
1817anim1i 616 . . . . . . . . . . 11 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝑆)))
1918simplld 766 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝐺 ∈ UHGraph)
20 simpl 485 . . . . . . . . . . . 12 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → 𝑆 SubGraph 𝐺)
2120adantl 484 . . . . . . . . . . 11 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → 𝑆 SubGraph 𝐺)
2221adantr 483 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑆 SubGraph 𝐺)
23 simpr 487 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝑆))
241, 3, 19, 22, 23subgruhgredgd 27068 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}))
254uhgrfun 26853 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
267, 25syl 17 . . . . . . . . . . . . . . 15 (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺))
2726ad2antll 727 . . . . . . . . . . . . . 14 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → Fun (iEdg‘𝐺))
2827adantr 483 . . . . . . . . . . . . 13 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → Fun (iEdg‘𝐺))
29 simpll2 1209 . . . . . . . . . . . . 13 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (iEdg‘𝑆) ⊆ (iEdg‘𝐺))
30 funssfv 6693 . . . . . . . . . . . . 13 ((Fun (iEdg‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝑆)‘𝑥))
3128, 29, 23, 30syl3anc 1367 . . . . . . . . . . . 12 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝑆)‘𝑥))
3231eqcomd 2829 . . . . . . . . . . 11 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) = ((iEdg‘𝐺)‘𝑥))
3332fveq2d 6676 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (♯‘((iEdg‘𝑆)‘𝑥)) = (♯‘((iEdg‘𝐺)‘𝑥)))
34 subgreldmiedg 27067 . . . . . . . . . . . . . . 15 ((𝑆 SubGraph 𝐺𝑥 ∈ dom (iEdg‘𝑆)) → 𝑥 ∈ dom (iEdg‘𝐺))
3534ex 415 . . . . . . . . . . . . . 14 (𝑆 SubGraph 𝐺 → (𝑥 ∈ dom (iEdg‘𝑆) → 𝑥 ∈ dom (iEdg‘𝐺)))
3635adantr 483 . . . . . . . . . . . . 13 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → (𝑥 ∈ dom (iEdg‘𝑆) → 𝑥 ∈ dom (iEdg‘𝐺)))
3736adantl 484 . . . . . . . . . . . 12 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑥 ∈ dom (iEdg‘𝑆) → 𝑥 ∈ dom (iEdg‘𝐺)))
38 simpr 487 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → 𝐺 ∈ UPGraph)
3926funfnd 6388 . . . . . . . . . . . . . . . 16 (𝐺 ∈ UPGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
4039adantl 484 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
41 simpl 485 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → 𝑥 ∈ dom (iEdg‘𝐺))
422, 4upgrle 26877 . . . . . . . . . . . . . . 15 ((𝐺 ∈ UPGraph ∧ (iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2)
4338, 40, 41, 42syl3anc 1367 . . . . . . . . . . . . . 14 ((𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐺 ∈ UPGraph) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2)
4443expcom 416 . . . . . . . . . . . . 13 (𝐺 ∈ UPGraph → (𝑥 ∈ dom (iEdg‘𝐺) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2))
4544ad2antll 727 . . . . . . . . . . . 12 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑥 ∈ dom (iEdg‘𝐺) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2))
4637, 45syld 47 . . . . . . . . . . 11 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑥 ∈ dom (iEdg‘𝑆) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2))
4746imp 409 . . . . . . . . . 10 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (♯‘((iEdg‘𝐺)‘𝑥)) ≤ 2)
4833, 47eqbrtrd 5090 . . . . . . . . 9 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → (♯‘((iEdg‘𝑆)‘𝑥)) ≤ 2)
4914, 24, 48elrabd 3684 . . . . . . . 8 (((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) ∧ 𝑥 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
5049ralrimiva 3184 . . . . . . 7 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
51 fnfvrnss 6886 . . . . . . 7 (((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ∀𝑥 ∈ dom (iEdg‘𝑆)((iEdg‘𝑆)‘𝑥) ∈ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}) → ran (iEdg‘𝑆) ⊆ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
5212, 50, 51syl2anc 586 . . . . . 6 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → ran (iEdg‘𝑆) ⊆ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
53 df-f 6361 . . . . . 6 ((iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2} ↔ ((iEdg‘𝑆) Fn dom (iEdg‘𝑆) ∧ ran (iEdg‘𝑆) ⊆ {𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
5412, 52, 53sylanbrc 585 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2})
55 subgrv 27054 . . . . . . . 8 (𝑆 SubGraph 𝐺 → (𝑆 ∈ V ∧ 𝐺 ∈ V))
561, 3isupgr 26871 . . . . . . . . 9 (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
5756adantr 483 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝐺 ∈ V) → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
5855, 57syl 17 . . . . . . 7 (𝑆 SubGraph 𝐺 → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
5958adantr 483 . . . . . 6 ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
6059adantl 484 . . . . 5 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → (𝑆 ∈ UPGraph ↔ (iEdg‘𝑆):dom (iEdg‘𝑆)⟶{𝑒 ∈ (𝒫 (Vtx‘𝑆) ∖ {∅}) ∣ (♯‘𝑒) ≤ 2}))
6154, 60mpbird 259 . . . 4 ((((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) ∧ (𝑆 SubGraph 𝐺𝐺 ∈ UPGraph)) → 𝑆 ∈ UPGraph)
6261ex 415 . . 3 (((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) ⊆ (iEdg‘𝐺) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆)) → ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → 𝑆 ∈ UPGraph))
636, 62syl 17 . 2 (𝑆 SubGraph 𝐺 → ((𝑆 SubGraph 𝐺𝐺 ∈ UPGraph) → 𝑆 ∈ UPGraph))
6463anabsi8 670 1 ((𝐺 ∈ UPGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  {crab 3144  Vcvv 3496  cdif 3935  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   class class class wbr 5068  dom cdm 5557  ran crn 5558  Fun wfun 6351   Fn wfn 6352  wf 6353  cfv 6357  cle 10678  2c2 11695  chash 13693  Vtxcvtx 26783  iEdgciedg 26784  Edgcedg 26834  UHGraphcuhgr 26843  UPGraphcupgr 26867   SubGraph csubgr 27051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-edg 26835  df-uhgr 26845  df-upgr 26869  df-subgr 27052
This theorem is referenced by:  upgrspan  27077
  Copyright terms: Public domain W3C validator