![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucprcreg | Structured version Visualization version GIF version |
Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Regularity). (Contributed by NM, 9-Jul-2004.) (Proof shortened by BJ, 16-Apr-2019.) |
Ref | Expression |
---|---|
sucprcreg | ⊢ (¬ 𝐴 ∈ V ↔ suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucprc 5838 | . 2 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
2 | elirr 8543 | . . . 4 ⊢ ¬ 𝐴 ∈ 𝐴 | |
3 | df-suc 5767 | . . . . . . . 8 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
4 | 3 | eqeq1i 2656 | . . . . . . 7 ⊢ (suc 𝐴 = 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴) |
5 | ssequn2 3819 | . . . . . . 7 ⊢ ({𝐴} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐴}) = 𝐴) | |
6 | 4, 5 | bitr4i 267 | . . . . . 6 ⊢ (suc 𝐴 = 𝐴 ↔ {𝐴} ⊆ 𝐴) |
7 | 6 | biimpi 206 | . . . . 5 ⊢ (suc 𝐴 = 𝐴 → {𝐴} ⊆ 𝐴) |
8 | snidg 4239 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴}) | |
9 | ssel2 3631 | . . . . 5 ⊢ (({𝐴} ⊆ 𝐴 ∧ 𝐴 ∈ {𝐴}) → 𝐴 ∈ 𝐴) | |
10 | 7, 8, 9 | syl2an 493 | . . . 4 ⊢ ((suc 𝐴 = 𝐴 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝐴) |
11 | 2, 10 | mto 188 | . . 3 ⊢ ¬ (suc 𝐴 = 𝐴 ∧ 𝐴 ∈ V) |
12 | 11 | imnani 438 | . 2 ⊢ (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ V) |
13 | 1, 12 | impbii 199 | 1 ⊢ (¬ 𝐴 ∈ V ↔ suc 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∪ cun 3605 ⊆ wss 3607 {csn 4210 suc csuc 5763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-reg 8538 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-sn 4211 df-pr 4213 df-suc 5767 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |