Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suctrALT Structured version   Visualization version   GIF version

Theorem suctrALT 38579
 Description: The successor of a transitive class is transitive. The proof of http://us.metamath.org/other/completeusersproof/suctrvd.html is a Virtual Deduction proof verified by automatically transforming it into the Metamath proof of suctrALT 38579 using completeusersproof, which is verified by the Metamath program. The proof of http://us.metamath.org/other/completeusersproof/suctrro.html is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. See suctr 5772 for the original proof. (Contributed by Alan Sare, 11-Apr-2009.) (Revised by Alan Sare, 12-Jun-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
suctrALT (Tr 𝐴 → Tr suc 𝐴)

Proof of Theorem suctrALT
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sssucid 5766 . . . . . . 7 𝐴 ⊆ suc 𝐴
2 id 22 . . . . . . . 8 (Tr 𝐴 → Tr 𝐴)
3 id 22 . . . . . . . . 9 ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑧𝑦𝑦 ∈ suc 𝐴))
43simpld 475 . . . . . . . 8 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧𝑦)
5 id 22 . . . . . . . 8 (𝑦𝐴𝑦𝐴)
6 trel 4724 . . . . . . . . . 10 (Tr 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
763impib 1259 . . . . . . . . 9 ((Tr 𝐴𝑧𝑦𝑦𝐴) → 𝑧𝐴)
87idiALT 38200 . . . . . . . 8 ((Tr 𝐴𝑧𝑦𝑦𝐴) → 𝑧𝐴)
92, 4, 5, 8syl3an 1365 . . . . . . 7 ((Tr 𝐴 ∧ (𝑧𝑦𝑦 ∈ suc 𝐴) ∧ 𝑦𝐴) → 𝑧𝐴)
101, 9sseldi 3585 . . . . . 6 ((Tr 𝐴 ∧ (𝑧𝑦𝑦 ∈ suc 𝐴) ∧ 𝑦𝐴) → 𝑧 ∈ suc 𝐴)
11103expia 1264 . . . . 5 ((Tr 𝐴 ∧ (𝑧𝑦𝑦 ∈ suc 𝐴)) → (𝑦𝐴𝑧 ∈ suc 𝐴))
124adantr 481 . . . . . . . . 9 (((𝑧𝑦𝑦 ∈ suc 𝐴) ∧ 𝑦 = 𝐴) → 𝑧𝑦)
13 id 22 . . . . . . . . . 10 (𝑦 = 𝐴𝑦 = 𝐴)
1413adantl 482 . . . . . . . . 9 (((𝑧𝑦𝑦 ∈ suc 𝐴) ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴)
1512, 14eleqtrd 2700 . . . . . . . 8 (((𝑧𝑦𝑦 ∈ suc 𝐴) ∧ 𝑦 = 𝐴) → 𝑧𝐴)
161, 15sseldi 3585 . . . . . . 7 (((𝑧𝑦𝑦 ∈ suc 𝐴) ∧ 𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)
1716ex 450 . . . . . 6 ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦 = 𝐴𝑧 ∈ suc 𝐴))
1817adantl 482 . . . . 5 ((Tr 𝐴 ∧ (𝑧𝑦𝑦 ∈ suc 𝐴)) → (𝑦 = 𝐴𝑧 ∈ suc 𝐴))
193simprd 479 . . . . . . 7 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴)
20 elsuci 5755 . . . . . . 7 (𝑦 ∈ suc 𝐴 → (𝑦𝐴𝑦 = 𝐴))
2119, 20syl 17 . . . . . 6 ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦𝐴𝑦 = 𝐴))
2221adantl 482 . . . . 5 ((Tr 𝐴 ∧ (𝑧𝑦𝑦 ∈ suc 𝐴)) → (𝑦𝐴𝑦 = 𝐴))
2311, 18, 22mpjaod 396 . . . 4 ((Tr 𝐴 ∧ (𝑧𝑦𝑦 ∈ suc 𝐴)) → 𝑧 ∈ suc 𝐴)
2423ex 450 . . 3 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
2524alrimivv 1853 . 2 (Tr 𝐴 → ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
26 dftr2 4719 . . 3 (Tr suc 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
2726biimpri 218 . 2 (∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) → Tr suc 𝐴)
2825, 27syl 17 1 (Tr 𝐴 → Tr suc 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 383   ∧ wa 384   ∧ w3a 1036  ∀wal 1478   = wceq 1480   ∈ wcel 1987  Tr wtr 4717  suc csuc 5689 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3191  df-un 3564  df-in 3566  df-ss 3573  df-sn 4154  df-uni 4408  df-tr 4718  df-suc 5693 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator