Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suctrALTcf Structured version   Visualization version   GIF version

Theorem suctrALTcf 38638
 Description: The sucessor of a transitive class is transitive. suctrALTcf 38638, using conventional notation, was translated from virtual deduction form, suctrALTcfVD 38639, using a translation program. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
suctrALTcf (Tr 𝐴 → Tr suc 𝐴)

Proof of Theorem suctrALTcf
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sssucid 5761 . . . . . . . 8 𝐴 ⊆ suc 𝐴
2 id 22 . . . . . . . . 9 (Tr 𝐴 → Tr 𝐴)
3 id 22 . . . . . . . . . 10 ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑧𝑦𝑦 ∈ suc 𝐴))
4 simpl 473 . . . . . . . . . 10 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧𝑦)
53, 4syl 17 . . . . . . . . 9 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧𝑦)
6 id 22 . . . . . . . . 9 (𝑦𝐴𝑦𝐴)
7 trel 4719 . . . . . . . . . 10 (Tr 𝐴 → ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
873impib 1259 . . . . . . . . 9 ((Tr 𝐴𝑧𝑦𝑦𝐴) → 𝑧𝐴)
92, 5, 6, 8syl3an 1365 . . . . . . . 8 ((Tr 𝐴 ∧ (𝑧𝑦𝑦 ∈ suc 𝐴) ∧ 𝑦𝐴) → 𝑧𝐴)
10 ssel2 3578 . . . . . . . 8 ((𝐴 ⊆ suc 𝐴𝑧𝐴) → 𝑧 ∈ suc 𝐴)
111, 9, 10eel0321old 38420 . . . . . . 7 ((Tr 𝐴 ∧ (𝑧𝑦𝑦 ∈ suc 𝐴) ∧ 𝑦𝐴) → 𝑧 ∈ suc 𝐴)
12113expia 1264 . . . . . 6 ((Tr 𝐴 ∧ (𝑧𝑦𝑦 ∈ suc 𝐴)) → (𝑦𝐴𝑧 ∈ suc 𝐴))
13 id 22 . . . . . . . . 9 (𝑦 = 𝐴𝑦 = 𝐴)
14 eleq2 2687 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑧𝑦𝑧𝐴))
1514biimpac 503 . . . . . . . . 9 ((𝑧𝑦𝑦 = 𝐴) → 𝑧𝐴)
165, 13, 15syl2an 494 . . . . . . . 8 (((𝑧𝑦𝑦 ∈ suc 𝐴) ∧ 𝑦 = 𝐴) → 𝑧𝐴)
171, 16, 10eel021old 38404 . . . . . . 7 (((𝑧𝑦𝑦 ∈ suc 𝐴) ∧ 𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)
1817ex 450 . . . . . 6 ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦 = 𝐴𝑧 ∈ suc 𝐴))
19 simpr 477 . . . . . . . 8 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴)
203, 19syl 17 . . . . . . 7 ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑦 ∈ suc 𝐴)
21 elsuci 5750 . . . . . . 7 (𝑦 ∈ suc 𝐴 → (𝑦𝐴𝑦 = 𝐴))
2220, 21syl 17 . . . . . 6 ((𝑧𝑦𝑦 ∈ suc 𝐴) → (𝑦𝐴𝑦 = 𝐴))
23 jao 534 . . . . . . 7 ((𝑦𝐴𝑧 ∈ suc 𝐴) → ((𝑦 = 𝐴𝑧 ∈ suc 𝐴) → ((𝑦𝐴𝑦 = 𝐴) → 𝑧 ∈ suc 𝐴)))
24233imp 1254 . . . . . 6 (((𝑦𝐴𝑧 ∈ suc 𝐴) ∧ (𝑦 = 𝐴𝑧 ∈ suc 𝐴) ∧ (𝑦𝐴𝑦 = 𝐴)) → 𝑧 ∈ suc 𝐴)
2512, 18, 22, 24eel2122old 38422 . . . . 5 ((Tr 𝐴 ∧ (𝑧𝑦𝑦 ∈ suc 𝐴)) → 𝑧 ∈ suc 𝐴)
2625ex 450 . . . 4 (Tr 𝐴 → ((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
2726alrimivv 1853 . . 3 (Tr 𝐴 → ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
28 dftr2 4714 . . . 4 (Tr suc 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴))
2928biimpri 218 . . 3 (∀𝑧𝑦((𝑧𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) → Tr suc 𝐴)
3027, 29syl 17 . 2 (Tr 𝐴 → Tr suc 𝐴)
3130iin1 38267 1 (Tr 𝐴 → Tr suc 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 383   ∧ wa 384  ∀wal 1478   = wceq 1480   ∈ wcel 1987   ⊆ wss 3555  Tr wtr 4712  suc csuc 5684 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3188  df-un 3560  df-in 3562  df-ss 3569  df-sn 4149  df-uni 4403  df-tr 4713  df-suc 5688 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator